Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
451
(429)
452
(432)
453
(433)
454
(434)
455
(435)
456
(436)
457
(437)
458
(438)
459
(439)
460
(440)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(436)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1040
"
type
="
section
"
level
="
1
"
n
="
626
">
<
pb
o
="
436
"
file
="
0456
"
n
="
456
"
rhead
="
GEOMETRIÆ
"/>
</
div
>
<
div
xml:id
="
echoid-div1041
"
type
="
section
"
level
="
1
"
n
="
627
">
<
head
xml:id
="
echoid-head657
"
xml:space
="
preserve
">THEOREMA VIII. PROPOS. VIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11317
"
xml:space
="
preserve
">SI in ſpirales in alijs reuolutionibus genitas, quam in
<
lb
/>
<
figure
xlink:label
="
fig-0456-01
"
xlink:href
="
fig-0456-01a
"
number
="
314
">
<
image
file
="
0456-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0456-01
"/>
</
figure
>
prima incidant duę
<
lb
/>
lineæ ab initio ſpira-
<
lb
/>
lis, habebunt illæ in-
<
lb
/>
ter ſe eandem rationẽ,
<
lb
/>
quam arcus circuli pri-
<
lb
/>
mi, intercepti, veluti
<
lb
/>
dicitur in anteceden-
<
lb
/>
te, cum integra circũ-
<
lb
/>
ferentia toties aſſum-
<
lb
/>
pta, quotus eſt vnitate
<
lb
/>
minor reuolut ionum
<
lb
/>
numerus.</
s
>
<
s
xml:id
="
echoid-s11318
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11319
"
xml:space
="
preserve
">Hę duę Propoſitiones oſtenduntur ab Archimede lib. </
s
>
<
s
xml:id
="
echoid-s11320
"
xml:space
="
preserve
">de pir.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11321
"
xml:space
="
preserve
">Prop. </
s
>
<
s
xml:id
="
echoid-s11322
"
xml:space
="
preserve
">14. </
s
>
<
s
xml:id
="
echoid-s11323
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s11324
"
xml:space
="
preserve
">15.</
s
>
<
s
xml:id
="
echoid-s11325
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1043
"
type
="
section
"
level
="
1
"
n
="
628
">
<
head
xml:id
="
echoid-head658
"
xml:space
="
preserve
">SCOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11326
"
xml:space
="
preserve
">_I_N prima reuolutione orta ſit ſpiralis, ACER, & </
s
>
<
s
xml:id
="
echoid-s11327
"
xml:space
="
preserve
">RTV MG, in ſe-
<
lb
/>
cunda, &</
s
>
<
s
xml:id
="
echoid-s11328
"
xml:space
="
preserve
">, AC, AE, pertingant ad primam, AV, AM, ad ſecun-
<
lb
/>
dam, erit, AC, ad, AE, vt circumferentia, RSO, ad, RSN, AV, verò
<
lb
/>
ad, AM, erit vt circumferentia tota, RNOS, cum, RSO, ad, RNOS,
<
lb
/>
totam, cum, RSON, &</
s
>
<
s
xml:id
="
echoid-s11329
"
xml:space
="
preserve
">, ſic in cæteris.</
s
>
<
s
xml:id
="
echoid-s11330
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1044
"
type
="
section
"
level
="
1
"
n
="
629
">
<
head
xml:id
="
echoid-head659
"
xml:space
="
preserve
">THEOREMA IX. PROPOS. IX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11331
"
xml:space
="
preserve
">SPatium compręhenſum à ſpirali ex prima reuolutione
<
lb
/>
orta, & </
s
>
<
s
xml:id
="
echoid-s11332
"
xml:space
="
preserve
">prima linea, quæ initium eſt reuolutionis, eſt
<
lb
/>
tertia pars primi circuli.</
s
>
<
s
xml:id
="
echoid-s11333
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11334
"
xml:space
="
preserve
">Sit ſpiralis in prima reuolutione genita ipſa, AIE, AE, verò re-
<
lb
/>
uolutionis initium, & </
s
>
<
s
xml:id
="
echoid-s11335
"
xml:space
="
preserve
">centro, A, interuallo, AE, ſit primus circu-
<
lb
/>
lus deſcriptus, ESM. </
s
>
<
s
xml:id
="
echoid-s11336
"
xml:space
="
preserve
">Dico ſpatium, AIE, tertiam partem eſſe cir-
<
lb
/>
culi, EMS. </
s
>
<
s
xml:id
="
echoid-s11337
"
xml:space
="
preserve
">Sumpto itaq; </
s
>
<
s
xml:id
="
echoid-s11338
"
xml:space
="
preserve
">vtcunq; </
s
>
<
s
xml:id
="
echoid-s11339
"
xml:space
="
preserve
">puncto, vt, V, in, AE, centro,
<
lb
/>
A, interuallo, AV, circulus deſcribatur, VIT, & </
s
>
<
s
xml:id
="
echoid-s11340
"
xml:space
="
preserve
">iuncta, AI, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>