Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
451
(429)
452
(432)
453
(433)
454
(434)
455
(435)
456
(436)
457
(437)
458
(438)
459
(439)
460
(440)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(438)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1044
"
type
="
section
"
level
="
1
"
n
="
629
">
<
p
>
<
s
xml:id
="
echoid-s11348
"
xml:space
="
preserve
">
<
pb
o
="
438
"
file
="
0458
"
n
="
458
"
rhead
="
GEOMETRIÆ
"/>
<
figure
xlink:label
="
fig-0458-01
"
xlink:href
="
fig-0458-01a
"
number
="
316
">
<
image
file
="
0458-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0458-01
"/>
</
figure
>
circumferentia, MSE, ad circumferentiam, ITV, eſt vt quadratũ
<
lb
/>
EA, ad quadratum, AV, ideſt vt, RQ, ad, XG, eſt autem, RQ, æ,
<
lb
/>
qualis circumferentiæ, MSE, ergo &</
s
>
<
s
xml:id
="
echoid-s11349
"
xml:space
="
preserve
">, GX, circumferentiæ, ITV,
<
lb
/>
æqualis erit, & </
s
>
<
s
xml:id
="
echoid-s11350
"
xml:space
="
preserve
">ſic oſtendemus quamlibet circumferentiam ipſi
<
lb
/>
A, concentricam, & </
s
>
<
s
xml:id
="
echoid-s11351
"
xml:space
="
preserve
">interceptam inter ſpiralem, AIE, & </
s
>
<
s
xml:id
="
echoid-s11352
"
xml:space
="
preserve
">rectam
<
lb
/>
AE, tamen extra ſpatium helicum, AIE, adæquari ductæ in trili-
<
lb
/>
neo, OGRQ, ipſi, RQ, ductæ parallelæ, quæ nempè abſcindunt
<
lb
/>
verſus puncta, O, A, ipſarum, OQ, AE, partes ęquales, & </
s
>
<
s
xml:id
="
echoid-s11353
"
xml:space
="
preserve
">quia,
<
lb
/>
OQ, AE, ſupponuntur æquales, ideò omnes lineę trilinei, OGR
<
lb
/>
Q, regula, RQ, omnibus circumferentijs trilinei recta, AE, ſpira-
<
lb
/>
li, AIE, & </
s
>
<
s
xml:id
="
echoid-s11354
"
xml:space
="
preserve
">circũferentia, MSE, cõpręhenſi æquales erunt. </
s
>
<
s
xml:id
="
echoid-s11355
"
xml:space
="
preserve
">Similiter,
<
lb
/>
quia eſt, RQ, ad, NX, vt, QO, ad, OX, vel, EA, ad, AV, vel circũ-
<
lb
/>
ferentia, MSE, ad, TIV, æquatur autem, RQ, ipſi, MSE, ergo, N
<
lb
/>
X, æquatur circumferentiæ, TIV, & </
s
>
<
s
xml:id
="
echoid-s11356
"
xml:space
="
preserve
">ſic oſtendemus omnes lineas
<
lb
/>
trianguli, ORQ, adæquari omnibus circumferentijs circuli, MSE,
<
lb
/>
ergo vt trianguli, ORQ, omnes lineæ ad omnes lineas trilinei, OG
<
lb
/>
RQ, vel vt triangulum, ORQ, ad trilineum, OGRQ, ita omnes
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0458-01
"
xlink:href
="
note-0458-01a
"
xml:space
="
preserve
">3. l. 2.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>