Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
451
(429)
452
(432)
453
(433)
454
(434)
455
(435)
456
(436)
457
(437)
458
(438)
459
(439)
460
(440)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(439)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1044
"
type
="
section
"
level
="
1
"
n
="
629
">
<
p
>
<
s
xml:id
="
echoid-s11356
"
xml:space
="
preserve
">
<
pb
o
="
439
"
file
="
0459
"
n
="
459
"
rhead
="
LIBER V.
"/>
circumferentiæ circuli, MSE, erunt ad omnes circumferentias fi-
<
lb
/>
guræ ſpirali, AIE, recta, AE, & </
s
>
<
s
xml:id
="
echoid-s11357
"
xml:space
="
preserve
">circumferentia, MSE, concluſæ,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s11358
"
xml:space
="
preserve
">per conuerſionem rationis triangulum, ORQ, vel, OZR, ad fi-
<
lb
/>
guram, OGR, erit vt omnes circumferentiæ circuli, MSE, ad om-
<
lb
/>
nes circumferentias ſpatij helici, AIE, ideſt vt circulus ad ſpatium,
<
lb
/>
AIE, (quia curua, AIE, eſt talis conditionis, qualem poſtulat Prop.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11359
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-0459-01
"
xlink:href
="
note-0459-01a
"
xml:space
="
preserve
">1. l. 4.</
note
>
6. </
s
>
<
s
xml:id
="
echoid-s11360
"
xml:space
="
preserve
">vt elicitur ex Prop. </
s
>
<
s
xml:id
="
echoid-s11361
"
xml:space
="
preserve
">7. </
s
>
<
s
xml:id
="
echoid-s11362
"
xml:space
="
preserve
">huius) cum verò ſemiparabola, OGRZ,
<
lb
/>
ſit ſexquitertia trianguli, OZR, vnde diuidendo figura, OGR, ſit
<
lb
/>
tertia pars trianguli, OZR, ideò, & </
s
>
<
s
xml:id
="
echoid-s11363
"
xml:space
="
preserve
">ſpatium helicum, AIE, tertia
<
lb
/>
pars erit circuli, MSE, quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s11364
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1046
"
type
="
section
"
level
="
1
"
n
="
630
">
<
head
xml:id
="
echoid-head660
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11365
"
xml:space
="
preserve
">_H_Vcuſq; </
s
>
<
s
xml:id
="
echoid-s11366
"
xml:space
="
preserve
">per methodum indiuiſibilium etiam in boc Libro libuit
<
lb
/>
procedere, vt innoteſceret nos poſſe, quæ Archimedes oſtendit
<
lb
/>
Lib. </
s
>
<
s
xml:id
="
echoid-s11367
"
xml:space
="
preserve
">de Spiralibus, circa ſpatiorum menſuram, etiam tali artificio de-
<
lb
/>
monſtrare, etenim ſi quis hoc attentauerit circa ſequentes Propoſitio-
<
lb
/>
nes, idipſum obtineri poſſe facilè animaduertet, veruntamen hoc ar-
<
lb
/>
bitrio, ac iudicio Lectoris relinquendo, placuit etiam ſtylo veteri,
<
lb
/>
aliter tamen ab Archimede, eaſdem propoſitiones demonſtrare.</
s
>
<
s
xml:id
="
echoid-s11368
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1047
"
type
="
section
"
level
="
1
"
n
="
631
">
<
head
xml:id
="
echoid-head661
"
style
="
it
"
xml:space
="
preserve
">Præfatæ Propoſ. alia demonſtratio.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11369
"
xml:space
="
preserve
">SIt alia ſpiralis ex prima reuolutione orta, ASRMB, AB, verò
<
lb
/>
initium reuolutionis, & </
s
>
<
s
xml:id
="
echoid-s11370
"
xml:space
="
preserve
">centro, A, interuallo, AB, ſit primus
<
lb
/>
circulus deſcriptus, ECDB, deinde exponatur triangulus, FHG,
<
lb
/>
rectum habens angulum ad, G, cuius latus, FG, ſit æquale ipſi, A
<
lb
/>
B, & </
s
>
<
s
xml:id
="
echoid-s11371
"
xml:space
="
preserve
">HG, circumferentiæ, ECDB, erit ergo triangulus, FHG, æ-
<
lb
/>
qualis circulo, ECDB, intelligatur deinde in eiuſdem trianguli
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0459-02
"
xlink:href
="
note-0459-02a
"
xml:space
="
preserve
">z. huius.</
note
>
plano tranſire parabolam, HLF, cuius vertex ſit, F, &</
s
>
<
s
xml:id
="
echoid-s11372
"
xml:space
="
preserve
">, HG, pa-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0459-03
"
xlink:href
="
note-0459-03a
"
xml:space
="
preserve
">20. l. 4.</
note
>
rallela eiuſdem axi, ad quemipſa, GF, ſit ordinatim applicata, quę
<
lb
/>
tanget ſectionem in puncto, F. </
s
>
<
s
xml:id
="
echoid-s11373
"
xml:space
="
preserve
">Dico igitur, FLHG, trilineum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0459-04
"
xlink:href
="
note-0459-04a
"
xml:space
="
preserve
">17. Primi
<
lb
/>
Conic.</
note
>
æquari ſpatio reſiduo, dempto à circulo, ECDB, ſpatio helico ſub
<
lb
/>
ſpirali, ASRMB, &</
s
>
<
s
xml:id
="
echoid-s11374
"
xml:space
="
preserve
">, AB, ſi enim non eſt illi æquale, erit eodem,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0459-05
"
xlink:href
="
note-0459-05a
"
xml:space
="
preserve
">Defi. 3.
<
lb
/>
huius.</
note
>
vel maius, vel minus, ſit primò maius quantitate ſpatij, quod vo-
<
lb
/>
cetur, Ω, rurſus diuidatur, HG, bifariam in, Π, & </
s
>
<
s
xml:id
="
echoid-s11375
"
xml:space
="
preserve
">iungantur, FΠ,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s11376
"
xml:space
="
preserve
">ſic ipſæ, AΠ, ΠG, diuidantur bifariam in, P, Γ, & </
s
>
<
s
xml:id
="
echoid-s11377
"
xml:space
="
preserve
">iungantur,
<
lb
/>
PF, ΓF, ſicque ſemper fiat donec deuentum ſit, vt ad triangulum,
<
lb
/>
FΓG, quod ſit minus ſpatio, Ω, deueniemus autem, nam à ma-
<
lb
/>
gnitudine propoſita, & </
s
>
<
s
xml:id
="
echoid-s11378
"
xml:space
="
preserve
">his, quæ relinquuntur, ſemper aufertur
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0459-06
"
xlink:href
="
note-0459-06a
"
xml:space
="
preserve
">1. Decimè
<
lb
/>
Elem.</
note
>
dimidium, ſecent autem iungentes, F, cum diuiſionum punctis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>