Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
451
452
453
454
455
456
457
458
459
460
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/460.jpg
"
pagenum
="
432
"/>
<
arrow.to.target
n
="
note461
"/>
diametrum Terræ conjunctim; id eſt, ut 39,371 ad 1 & 100 ad
<
lb
/>
365 conjunctim, ſeu 1079 ad 100. Unde cum Mare noſtrum vi
<
lb
/>
Lunæ attollatur ad pedes 8 2/3, fluidum Lunare vi Terræ attolli de
<
lb
/>
beret ad pedes 93 1/2. EaQ.E.D. cauſa Figura Lunæ Sphærois eſſet,
<
lb
/>
cujus maxima diameter producta tranſiret per centrum Terræ, &
<
lb
/>
ſuperaret diametros perpendiculares exceſſu pedum 187. Talem
<
lb
/>
igitur Figuram Luna affectat, eamque ſub initio induere debuit.
<
lb
/>
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note461
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Inde vero fit ut eadem ſemper Lunæ facies in Terram
<
lb
/>
obvertatur. </
s
>
<
s
>In alio enim ſitu corpus Lunare quieſcere non po
<
lb
/>
teſt, ſed ad hunc ſitum oſcillando ſemper redibit. </
s
>
<
s
>Attamen oſcil
<
lb
/>
lationes, ob parvitatem virium agitantium, eſſent longè tardiſſimæ:
<
lb
/>
adeo ut facies illa, quæ Terram ſemper reſpicere deberet, poſſit
<
lb
/>
alterum orbis Lunaris umbilicum, ob rationem in Prop. </
s
>
<
s
>XVII. alla
<
lb
/>
tam reſpicere, neque ſtatim abinde retrahi & in Terram converti. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA I.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si
<
emph.end
type
="
italics
"/>
APEp
<
emph
type
="
italics
"/>
Terram deſignet uniformiter denſam, centroque
<
lb
/>
C & Polis
<
emph.end
type
="
italics
"/>
P, p
<
emph
type
="
italics
"/>
& Æquatore
<
emph.end
type
="
italics
"/>
AE
<
emph
type
="
italics
"/>
delineatam; & ſi centro
<
emph.end
type
="
italics
"/>
C
<
lb
/>
<
emph
type
="
italics
"/>
radio
<
emph.end
type
="
italics
"/>
CP
<
emph
type
="
italics
"/>
deſcribi intelligatur Sphæra
<
emph.end
type
="
italics
"/>
Pape;
<
emph
type
="
italics
"/>
ſit autem
<
emph.end
type
="
italics
"/>
QR
<
emph
type
="
italics
"/>
pla
<
lb
/>
num, cui recta a centro Solis ad centrum Terræ ducta normaliter
<
lb
/>
inſiſtit; & Terræ totius exterioris
<
emph.end
type
="
italics
"/>
PapAPepE,
<
emph
type
="
italics
"/>
quæ Sphæra
<
lb
/>
modo deſcripta altior eſt, particulæ ſingulæ conentur recedere hinc
<
lb
/>
inde a plano
<
emph.end
type
="
italics
"/>
QR,
<
emph
type
="
italics
"/>
ſitque conatus particulæ cujuſque ut ejuſdem
<
lb
/>
diſtantia a plano: Dico primo, quod tota particularum omnium, in
<
lb
/>
Æquatoris circulo
<
emph.end
type
="
italics
"/>
AE,
<
emph
type
="
italics
"/>
extra globum uniformiter per totum cir
<
lb
/>
cuitum in morem annuli diſpoſitarum, vis & efficacia ad Terram
<
lb
/>
circum centrum ejus rotandam, ſit ad totam particularum totidem
<
lb
/>
in Æquatoris puncto
<
emph.end
type
="
italics
"/>
A,
<
emph
type
="
italics
"/>
quod a plano
<
emph.end
type
="
italics
"/>
QR
<
emph
type
="
italics
"/>
maxime diſtat, con
<
lb
/>
ſiſtentium vim & efficaciam, ad Terram conſimili motu circulari
<
lb
/>
circum centrum ejus movendam, ut unum ad duo. </
s
>
<
s
>Et motus iſte
<
lb
/>
circularis circum axem, in communi ſectione Æquatoris & plani
<
emph.end
type
="
italics
"/>
<
lb
/>
QR
<
emph
type
="
italics
"/>
jacentem, peragetur.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam centro
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
diametro
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
deſcribatur ſemicirculus
<
lb
/>
<
emph
type
="
italics
"/>
BAFDC.
<
emph.end
type
="
italics
"/>
Dividi intelligatur ſemicircum ferentia
<
emph
type
="
italics
"/>
BAD
<
emph.end
type
="
italics
"/>
in </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>