Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
461
462
463
464
465
466
467
468
469
470
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/461.jpg
"
pagenum
="
433
"/>
partes innumeras æquales, & a partibus ſingulis
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
ad diame
<
lb
/>
<
arrow.to.target
n
="
note462
"/>
trum
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
demittantur ſinus
<
emph
type
="
italics
"/>
FY.
<
emph.end
type
="
italics
"/>
Et ſumma quadratorum ex
<
lb
/>
ſinibus omnibus
<
emph
type
="
italics
"/>
FY
<
emph.end
type
="
italics
"/>
æqualis erit ſummæ quadratorum ex ſinibus
<
lb
/>
omnibus
<
emph
type
="
italics
"/>
CY,
<
emph.end
type
="
italics
"/>
& ſumma utraque æqualis erit ſummæ quadrato
<
lb
/>
rum ex totidem ſemidiametris
<
emph
type
="
italics
"/>
CF
<
emph.end
type
="
italics
"/>
; adeoque ſumma quadrato
<
lb
/>
rum ex omnibus
<
emph
type
="
italics
"/>
FY,
<
emph.end
type
="
italics
"/>
erit duplo minor quam ſumma quadrato
<
lb
/>
rum ex totidem ſemidiametris
<
emph
type
="
italics
"/>
CF.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note462
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
figure
id
="
id.039.01.461.1.jpg
"
xlink:href
="
039/01/461/1.jpg
"
number
="
223
"/>
<
p
type
="
main
">
<
s
>Jam dividatur perimeter circuli
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
in particulas totidem æ
<
lb
/>
quales, & ab earum unaquaque
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
ad planum
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
demittatur
<
lb
/>
perpendiculum
<
emph
type
="
italics
"/>
FG,
<
emph.end
type
="
italics
"/>
ut & a puncto
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
perpendiculum
<
emph
type
="
italics
"/>
AH.
<
emph.end
type
="
italics
"/>
Et
<
lb
/>
vis qua particula
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
recedit a plano
<
emph
type
="
italics
"/>
QR,
<
emph.end
type
="
italics
"/>
erit ut perpendiculum
<
lb
/>
illud
<
emph
type
="
italics
"/>
FG
<
emph.end
type
="
italics
"/>
per hypotheſin, & hæc vis ducta in diſtantiam
<
emph
type
="
italics
"/>
CG,
<
emph.end
type
="
italics
"/>
<
lb
/>
erit efficacia particulæ
<
emph
type
="
italics
"/>
F
<
emph.end
type
="
italics
"/>
ad Terram circum centrum ejus con
<
lb
/>
vertendam. </
s
>
<
s
>Adeoque efficacia particulæ in loco
<
emph
type
="
italics
"/>
F,
<
emph.end
type
="
italics
"/>
erit ad effi
<
lb
/>
caciam particulæ in loco
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
FGXGC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AHXHC,
<
emph.end
type
="
italics
"/>
hoc
<
lb
/>
eſt, ut
<
emph
type
="
italics
"/>
FCq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
ACq
<
emph.end
type
="
italics
"/>
; & propterea efficacia tota particularum
<
lb
/>
omnium in locis ſuis
<
emph
type
="
italics
"/>
F,
<
emph.end
type
="
italics
"/>
erit ad efficaciam particularum totidem in
<
lb
/>
loco
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ut ſumma omnium
<
emph
type
="
italics
"/>
FCq
<
emph.end
type
="
italics
"/>
ad ſummam totidem
<
emph
type
="
italics
"/>
ACq,
<
emph.end
type
="
italics
"/>
hoc
<
lb
/>
eſt, (per jam demonſtrata) ut unum ad duo.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Et quoniam particulæ agunt recedendo perpendiculariter a
<
lb
/>
plano
<
emph
type
="
italics
"/>
QR,
<
emph.end
type
="
italics
"/>
idque æqualiter ab utraque parte hujus plani: eædem
<
lb
/>
convertent circumferentiam circuli Æquatoris, eiQ.E.I.hærentem
<
lb
/>
Terram, circum axem tam in plano illo
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
quam in plano Æqua
<
lb
/>
toris jacentem. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>