Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
461
461
462
462
463
463
464
464
465
465
466
466
467
467
468
468
469
469
470
470
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/462.jpg" pagenum="434"/>
                    <arrow.to.target n="note463"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note463"/>
                  DE MUNDI
                    <lb/>
                  SYSTEMATE</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  LEMMA II.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Iiſdem poſitis: Dico ſecundo quod vis & efficacia tota parti­
                    <lb/>
                  cularum omnium extra globum undique ſitarum, ad Terram cir­
                    <lb/>
                  cum axem eundem rotandam, ſit ad vim totam particularum toti­
                    <lb/>
                  dem, in Æquatoris circulo
                    <emph.end type="italics"/>
                  AE,
                    <emph type="italics"/>
                  uniformiter per totum circuitum
                    <lb/>
                  in morem annuli diſpoſitarum, ad Terram conſimili motu circulari
                    <lb/>
                  movendam, ut duo ad quinque.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>Sit enim
                    <emph type="italics"/>
                  IK
                    <emph.end type="italics"/>
                  circulus quilibet minor Æquatori
                    <emph type="italics"/>
                  AE
                    <emph.end type="italics"/>
                  parallelus,
                    <lb/>
                  ſintque
                    <emph type="italics"/>
                  L, l
                    <emph.end type="italics"/>
                  particulæ duæ quævis æquales in hoc circulo extra
                    <lb/>
                  globum
                    <emph type="italics"/>
                  Pape
                    <emph.end type="italics"/>
                  ſitæ. </s>
                  <s>Et ſi in planum
                    <emph type="italics"/>
                  QR,
                    <emph.end type="italics"/>
                  quod radio in Solem
                    <lb/>
                  ducto perpendiculare eſt, demittantur perpendicula
                    <emph type="italics"/>
                  LM, lm:
                    <emph.end type="italics"/>
                    <lb/>
                  vires totæ quibus particulæ illæ fugiunt planum
                    <emph type="italics"/>
                  QR,
                    <emph.end type="italics"/>
                  proporti­
                    <lb/>
                  onales erunt perpendiculis illis
                    <emph type="italics"/>
                  LM, lm.
                    <emph.end type="italics"/>
                  Sit autem recta
                    <emph type="italics"/>
                  Ll
                    <emph.end type="italics"/>
                    <lb/>
                  plano
                    <emph type="italics"/>
                  Pape
                    <emph.end type="italics"/>
                  parallela & biſecetur eadem in
                    <emph type="italics"/>
                  X,
                    <emph.end type="italics"/>
                  & per pun­
                    <lb/>
                  ctum
                    <emph type="italics"/>
                  X
                    <emph.end type="italics"/>
                  agatur
                    <emph type="italics"/>
                  Nn,
                    <emph.end type="italics"/>
                  quæ parallela ſit plano
                    <emph type="italics"/>
                  QR
                    <emph.end type="italics"/>
                  & perpendi­
                    <lb/>
                    <figure id="id.039.01.462.1.jpg" xlink:href="039/01/462/1.jpg" number="224"/>
                    <lb/>
                  culis
                    <emph type="italics"/>
                  LM, lm
                    <emph.end type="italics"/>
                  occurrat in
                    <emph type="italics"/>
                  N
                    <emph.end type="italics"/>
                  ac
                    <emph type="italics"/>
                  n,
                    <emph.end type="italics"/>
                  & in planum
                    <emph type="italics"/>
                  QR
                    <emph.end type="italics"/>
                  demit­
                    <lb/>
                  tatur perpendiculum
                    <emph type="italics"/>
                  XT.
                    <emph.end type="italics"/>
                  Et particularum
                    <emph type="italics"/>
                  L
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  l
                    <emph.end type="italics"/>
                  vires con­
                    <lb/>
                  trariæ, ad Terram in contrarias partes rotandam, ſunt ut
                    <lb/>
                    <emph type="italics"/>
                  LMXMC
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  lmXmC,
                    <emph.end type="italics"/>
                  hoc eſt, ut
                    <emph type="italics"/>
                  LNXMC+NMXMC
                    <emph.end type="italics"/>
                  &
                    <lb/>
                    <emph type="italics"/>
                  lnXmC-nmXmC,
                    <emph.end type="italics"/>
                  ſeu
                    <emph type="italics"/>
                  LNXMC+NMXMC
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  LNXmC
                    <emph.end type="italics"/>
                  </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>