Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
461
461
462
462
463
463
464
464
465
465
466
466
467
467
468
468
469
469
470
470
< >
page |< < of 524 > >|
1-NMXmC: & harum differentia LNXMm-NMX—MC+mC,
eſt vis particularum ambarum ſimul ſumptarum ad Terram
rotandam.
Hujus differentiæ pars affirmativa LNXMmſeu
2LNXNX,eſt ad particularum duarum ejuſdem magnitudi­
nis in Aconſiſtentium vim 2AHXHC,ut LXqad ACque
Et pars negativa NMX—MC+mCſeu 2XYXCY,ad parti­
cularum earundem in Aconſiſtentium vim 2AHXHC,ut
CXqad ACqueAc proinde partium differentia, id eſt, par­
ticularum duarum L& lſimul ſumptarum vis ad Terram rotan­
dam, eſt ad vim particularum duarum iiſdem æqualium & in loco
Aconſiſtentium, ad Terram itidem rotandam, ut LXq-CXq
ad ACqueSed ſi circuli IKcircumferentia IKdividatur in par­
ticulas innumeras æquales L,erunt omnes LXqad totidem IXq
ut 1 ad 2, (per Lem.
I.) atque ad totidem ACq,ut IXqad
2ACq; & totidem CXqad totidem ACqut 2CXqad 2ACque
Quare vires conjunctæ particularum omnium in circuitu circuli
IK,ſunt ad vires conjunctas particularum totidem in loco A,ut
IXq-2CXqad 2ACq: & propterea (per Lem. I.) ad vires
conjunctas particularum totidem in circuitu circuli AE,ut
IXq-2CXqad ACque
LIBER
TERTIUS.
Jam vero ſi Sphæræ diameter Ppdividatur in partes innume­
ras æquales, quibus inſiſtant circuli totidem IK; materia in peri­
metro circuli cujuſque IKerit ut IXq: ideoque vis materiæ
illius ad Terram rotandam, erit ut IXqin IXq-2CXqueEt
vis materiæ ejuſdem, ſi in circuli AEperimetro conſiſteret, eſſet
ut IXqin ACqueEt propterea vis particularum omnium ma­
teriæ totius, extra globum in perimetris circulorum omnium con­
ſiſtentis, eſt ad vim particularum totidem in perimetro circuli
maximi AEconſiſtentis, ut omnia IXqin IXq-2CXqad
totidem IXqin ACq,hoc eſt, ut omnia ACq-CXqin
ACq-3CXqad totidem ACq-CXqin ACq,id eſt, ut
omnia ACqq-4ACqXCXq+3CXqqad totidem ACqq
-ACqXCXq,hoc eſt, ut tota quantitas fluens cujus fluxio
eſt ACqq-4ACqXCXq+3CXqq,ad totam quantitatem flu­
entem cujus fluxio eſt ACqq-ACqXCXq; ac proinde per Me­
thodum Fluxionum, ut ACqqXCX-4/3ACqxCXcub+3/5CXqc
ad ACqqXCX-1/3ACqXCXcub,id eſt, ſi pro CXſcribatur
tota Cpvel AC,ut (4/15)ACqcad 2/3ACqc,hoc eſt, ut duo ad
quinque. que E. D.

Text layer

  • Dictionary
  • Places

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index