Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
461
462
463
464
465
466
467
468
469
470
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/463.jpg
"
pagenum
="
435
"/>
-
<
emph
type
="
italics
"/>
NMXmC
<
emph.end
type
="
italics
"/>
: & harum differentia
<
emph
type
="
italics
"/>
LNXMm-NMX—MC+mC,
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
note464
"/>
eſt vis particularum ambarum ſimul ſumptarum ad Terram
<
lb
/>
rotandam. </
s
>
<
s
>Hujus differentiæ pars affirmativa
<
emph
type
="
italics
"/>
LNXMm
<
emph.end
type
="
italics
"/>
ſeu
<
lb
/>
2
<
emph
type
="
italics
"/>
LNXNX,
<
emph.end
type
="
italics
"/>
eſt ad particularum duarum ejuſdem magnitudi
<
lb
/>
nis in
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
conſiſtentium vim 2
<
emph
type
="
italics
"/>
AHXHC,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
LXq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
ACq.
">ACque</
expan
>
<
emph.end
type
="
italics
"/>
<
lb
/>
Et pars negativa
<
emph
type
="
italics
"/>
NMX—MC+mC
<
emph.end
type
="
italics
"/>
ſeu 2
<
emph
type
="
italics
"/>
XYXCY,
<
emph.end
type
="
italics
"/>
ad parti
<
lb
/>
cularum earundem in
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
conſiſtentium vim 2
<
emph
type
="
italics
"/>
AHXHC,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
CXq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
ACq.
">ACque</
expan
>
<
emph.end
type
="
italics
"/>
Ac proinde partium differentia, id eſt, par
<
lb
/>
ticularum duarum
<
emph
type
="
italics
"/>
L
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
l
<
emph.end
type
="
italics
"/>
ſimul ſumptarum vis ad Terram rotan
<
lb
/>
dam, eſt ad vim particularum duarum iiſdem æqualium & in loco
<
lb
/>
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
conſiſtentium, ad Terram itidem rotandam, ut
<
emph
type
="
italics
"/>
LXq-CXq
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
ACq.
">ACque</
expan
>
<
emph.end
type
="
italics
"/>
Sed ſi circuli
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
circumferentia
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
dividatur in par
<
lb
/>
ticulas innumeras æquales
<
emph
type
="
italics
"/>
L,
<
emph.end
type
="
italics
"/>
erunt omnes
<
emph
type
="
italics
"/>
LXq
<
emph.end
type
="
italics
"/>
ad totidem
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
<
lb
/>
ut 1 ad 2, (per Lem. </
s
>
<
s
>I.) atque ad totidem
<
emph
type
="
italics
"/>
ACq,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
2
<
emph
type
="
italics
"/>
ACq
<
emph.end
type
="
italics
"/>
; & totidem
<
emph
type
="
italics
"/>
CXq
<
emph.end
type
="
italics
"/>
ad totidem
<
emph
type
="
italics
"/>
ACq
<
emph.end
type
="
italics
"/>
ut 2
<
emph
type
="
italics
"/>
CXq
<
emph.end
type
="
italics
"/>
ad 2
<
emph
type
="
italics
"/>
<
expan
abbr
="
ACq.
">ACque</
expan
>
<
emph.end
type
="
italics
"/>
<
lb
/>
Quare vires conjunctæ particularum omnium in circuitu circuli
<
lb
/>
<
emph
type
="
italics
"/>
IK,
<
emph.end
type
="
italics
"/>
ſunt ad vires conjunctas particularum totidem in loco
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
-2
<
emph
type
="
italics
"/>
CXq
<
emph.end
type
="
italics
"/>
ad 2
<
emph
type
="
italics
"/>
ACq
<
emph.end
type
="
italics
"/>
: & propterea (per Lem. </
s
>
<
s
>I.) ad vires
<
lb
/>
conjunctas particularum totidem in circuitu circuli
<
emph
type
="
italics
"/>
AE,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
-2
<
emph
type
="
italics
"/>
CXq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
ACq.
">ACque</
expan
>
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note464
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Jam vero ſi Sphæræ diameter
<
emph
type
="
italics
"/>
Pp
<
emph.end
type
="
italics
"/>
dividatur in partes innume
<
lb
/>
ras æquales, quibus inſiſtant circuli totidem
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
; materia in peri
<
lb
/>
metro circuli cujuſque
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
erit ut
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
: ideoque vis materiæ
<
lb
/>
illius ad Terram rotandam, erit ut
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
-2
<
emph
type
="
italics
"/>
<
expan
abbr
="
CXq.
">CXque</
expan
>
<
emph.end
type
="
italics
"/>
Et
<
lb
/>
vis materiæ ejuſdem, ſi in circuli
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
perimetro conſiſteret, eſſet
<
lb
/>
ut
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
<
expan
abbr
="
ACq.
">ACque</
expan
>
<
emph.end
type
="
italics
"/>
Et propterea vis particularum omnium ma
<
lb
/>
teriæ totius, extra globum in perimetris circulorum omnium con
<
lb
/>
ſiſtentis, eſt ad vim particularum totidem in perimetro circuli
<
lb
/>
maximi
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
conſiſtentis, ut omnia
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
-2
<
emph
type
="
italics
"/>
CXq
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
totidem
<
emph
type
="
italics
"/>
IXq
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
ACq,
<
emph.end
type
="
italics
"/>
hoc eſt, ut omnia
<
emph
type
="
italics
"/>
ACq-CXq
<
emph.end
type
="
italics
"/>
in
<
lb
/>
<
emph
type
="
italics
"/>
ACq
<
emph.end
type
="
italics
"/>
-3
<
emph
type
="
italics
"/>
CXq
<
emph.end
type
="
italics
"/>
ad totidem
<
emph
type
="
italics
"/>
ACq-CXq
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
ACq,
<
emph.end
type
="
italics
"/>
id eſt, ut
<
lb
/>
omnia
<
emph
type
="
italics
"/>
ACqq
<
emph.end
type
="
italics
"/>
-4
<
emph
type
="
italics
"/>
ACqXCXq
<
emph.end
type
="
italics
"/>
+3
<
emph
type
="
italics
"/>
CXqq
<
emph.end
type
="
italics
"/>
ad totidem
<
emph
type
="
italics
"/>
ACqq
<
lb
/>
-ACqXCXq,
<
emph.end
type
="
italics
"/>
hoc eſt, ut tota quantitas fluens cujus fluxio
<
lb
/>
eſt
<
emph
type
="
italics
"/>
ACqq
<
emph.end
type
="
italics
"/>
-4
<
emph
type
="
italics
"/>
ACqXCXq
<
emph.end
type
="
italics
"/>
+3
<
emph
type
="
italics
"/>
CXqq,
<
emph.end
type
="
italics
"/>
ad totam quantitatem flu
<
lb
/>
entem cujus fluxio eſt
<
emph
type
="
italics
"/>
ACqq-ACqXCXq
<
emph.end
type
="
italics
"/>
; ac proinde per Me
<
lb
/>
thodum Fluxionum, ut
<
emph
type
="
italics
"/>
ACqqXCX
<
emph.end
type
="
italics
"/>
-4/3
<
emph
type
="
italics
"/>
ACqxCXcub
<
emph.end
type
="
italics
"/>
+3/5
<
emph
type
="
italics
"/>
CXqc
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
ACqqXCX
<
emph.end
type
="
italics
"/>
-1/3
<
emph
type
="
italics
"/>
ACqXCXcub,
<
emph.end
type
="
italics
"/>
id eſt, ſi pro
<
emph
type
="
italics
"/>
CX
<
emph.end
type
="
italics
"/>
ſcribatur
<
lb
/>
tota
<
emph
type
="
italics
"/>
Cp
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
AC,
<
emph.end
type
="
italics
"/>
ut (4/15)
<
emph
type
="
italics
"/>
ACqc
<
emph.end
type
="
italics
"/>
ad 2/3
<
emph
type
="
italics
"/>
ACqc,
<
emph.end
type
="
italics
"/>
hoc eſt, ut duo ad
<
lb
/>
quinque.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>