Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
461
(441)
462
(442)
463
(443)
464
(444)
465
(445)
466
(446)
467
(447)
468
(448)
469
(449)
470
(450)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(443)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1051
"
type
="
section
"
level
="
1
"
n
="
633
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11437
"
xml:space
="
preserve
">
<
pb
o
="
443
"
file
="
0463
"
n
="
463
"
rhead
="
LIBER VI.
"/>
<
figure
xlink:label
="
fig-0463-01
"
xlink:href
="
fig-0463-01a
"
number
="
318
">
<
image
file
="
0463-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0463-01
"/>
</
figure
>
etiam parallela, ΚΣ,
<
lb
/>
abſcinditab, LA, ver
<
lb
/>
ſus, A, {4/5}. </
s
>
<
s
xml:id
="
echoid-s11438
"
xml:space
="
preserve
">ipſius, LA,
<
lb
/>
ſic ergo puncta notata
<
lb
/>
erunt, Q, γ Ζ, &</
s
>
<
s
xml:id
="
echoid-s11439
"
xml:space
="
preserve
">, Φ,
<
lb
/>
Δ, Γ, Π, ℟, Χ, per
<
lb
/>
quæ ſi extend itur cur-
<
lb
/>
ua linea, dico propin-
<
lb
/>
quiſſimè ſic Parabolã
<
lb
/>
delineari, prædictanẽ-
<
lb
/>
pè puncta eſſe in Pa-
<
lb
/>
rabola, cuius diame-
<
lb
/>
ter, A2, & </
s
>
<
s
xml:id
="
echoid-s11440
"
xml:space
="
preserve
">baſis, QX,
<
lb
/>
etenim babet bæc pro-
<
lb
/>
prietatem in præbabito Corollario declaratam, vel, vt clarius loquar,
<
lb
/>
XF, ad, E℟, exempligratia babetrationem compoſitam ex ratione, X
<
lb
/>
F, ad, FV, ideſt, propter conſtructionem, ex ratione, FA, ad, AE, & </
s
>
<
s
xml:id
="
echoid-s11441
"
xml:space
="
preserve
">ex
<
lb
/>
ratione, VF, ad, E℟, boc eſt adbuc ex ratione, FA, ad, AE, duæ autẽ
<
lb
/>
rationes, F A, ad, AE, componunt ratione quadrati, FA, ad quadra-
<
lb
/>
tum, AE, ergo, XF, ad, E℟, eſt Vt quadratum, FA, ad quadratum, A
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0463-01
"
xlink:href
="
note-0463-01a
"
xml:space
="
preserve
">Corol. 1.
<
lb
/>
1. 4.</
note
>
E, ſedſic etiam eſt, FX, ad parallelam ipſi, A2, interiectam inter, A
<
lb
/>
F, & </
s
>
<
s
xml:id
="
echoid-s11442
"
xml:space
="
preserve
">Parabolam circa diametrum, A2, in baſi, QX, ergo punctum,
<
lb
/>
℟, eſt in tali parabola: </
s
>
<
s
xml:id
="
echoid-s11443
"
xml:space
="
preserve
">Hoc idem oſtendemus eodem modo de cęteris
<
lb
/>
punctis, Π Γ, Δ, Φ, &</
s
>
<
s
xml:id
="
echoid-s11444
"
xml:space
="
preserve
">, Z γ, ergo dicta puncta ſunt omnia in dicta pa-
<
lb
/>
rabola. </
s
>
<
s
xml:id
="
echoid-s11445
"
xml:space
="
preserve
">Hic quidẽ modus debuiſſet poni Lib. </
s
>
<
s
xml:id
="
echoid-s11446
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s11447
"
xml:space
="
preserve
">ſiue in meo Tractatu de
<
lb
/>
Specuio V ſtorio iam in lucem edito, ſed quia oritur bic ex proprietate
<
lb
/>
proximè demonſtrata, nec illud prius menti ſubuenit, propterea idip.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11448
"
xml:space
="
preserve
">ſum bic ſubiungere libuit.</
s
>
<
s
xml:id
="
echoid-s11449
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1053
"
type
="
section
"
level
="
1
"
n
="
634
">
<
head
xml:id
="
echoid-head664
"
xml:space
="
preserve
">THEOREMA X. PROPOS. X.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11450
"
xml:space
="
preserve
">SI in ſpirali ex prima reuolutione orta ſumatur punctũ,
<
lb
/>
quod non ſit initium, nec terminus eiuſdem ſpiralis,
<
lb
/>
ab initio autem ſpiralis ad dictum punctum agatur recta
<
lb
/>
linea, & </
s
>
<
s
xml:id
="
echoid-s11451
"
xml:space
="
preserve
">ſuper initio ſpiralis centro ad diſtantiam dicti pũ-
<
lb
/>
cti deſctibatur circulus, eiuſdem portio comprehenſa du-
<
lb
/>
cta linea, & </
s
>
<
s
xml:id
="
echoid-s11452
"
xml:space
="
preserve
">portione eius, quæ dicitur reuolutionis initia-
<
lb
/>
tiua, quam abſcindit circumferentia dicti circuli, & </
s
>
<
s
xml:id
="
echoid-s11453
"
xml:space
="
preserve
">circũ-
<
lb
/>
ferentia eiuſdem, quæ eſt ad conſequentia, tripla eſt figu-
<
lb
/>
ræ comprehenſæ ducta linea, & </
s
>
<
s
xml:id
="
echoid-s11454
"
xml:space
="
preserve
">portione ſpiralis, quæ eſt
<
lb
/>
ad conſequentia vſquc ad initium ſpiralis.</
s
>
<
s
xml:id
="
echoid-s11455
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>