Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
461
462
463
464
465
466
467
468
469
470
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/465.jpg
"
pagenum
="
437
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXXIX. PROBLEMA XX.
<
emph.end
type
="
center
"/>
<
lb
/>
<
arrow.to.target
n
="
note466
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note466
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Invenire Præceſſionem Æquinoctiorum.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus mediocris horarius Nodorum Lunæ in Orbe circulari,
<
lb
/>
ubi Nodi ſunt in Quadraturis, erat 16″. </
s
>
<
s
>35′. </
s
>
<
s
>16
<
emph
type
="
sup
"/>
iv
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>36
<
emph
type
="
sup
"/>
v
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>& hujus
<
lb
/>
dimidium 8′. </
s
>
<
s
>17′. </
s
>
<
s
>38
<
emph
type
="
sup
"/>
iv
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>18
<
emph
type
="
sup
"/>
v
<
emph.end
type
="
sup
"/>
. (ob rationes ſupra explicatas) eſt mo
<
lb
/>
tus medius horarius Nodorum in tali Orbe; fitque anno toto
<
lb
/>
ſidereo 20
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
11′. </
s
>
<
s
>46″. </
s
>
<
s
>Quoniam igitur Nodi Lunæ in tali Orbe
<
lb
/>
conficerent annuatim 20
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
11′. </
s
>
<
s
>46″. </
s
>
<
s
>in antecedentia; & ſi plures
<
lb
/>
eſſent Lunæ motus Nodorum cujuſque, per Corol. </
s
>
<
s
>16. Prop. </
s
>
<
s
>
<
lb
/>
LXVI. Lib. </
s
>
<
s
>I. forent ut tempora periodica; ſi Luna ſpatio
<
lb
/>
diei ſiderei juxta ſuperficiem Terræ revolveretur, motus annuus
<
lb
/>
Nodorum foret ad 20
<
emph
type
="
sup
"/>
gr.
<
emph.end
type
="
sup
"/>
11′. </
s
>
<
s
>46″. </
s
>
<
s
>ut dies ſidereus horarum 23. 56′. </
s
>
<
s
>
<
lb
/>
ad tempus periodicum Lunæ dierum 27. 7 hor. </
s
>
<
s
>43′; id eſt, ut
<
lb
/>
1436 ad 39343. Et par eſt ratio Nodorum annuli Lunarum
<
lb
/>
Terram ambientis; ſive Lunæ illæ ſe mutuo non contingant, ſive
<
lb
/>
liqueſcant & in annulum continuum formentur, ſive denique an
<
lb
/>
nulus ille rigeſcat & inflexibilis reddatur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Fingamus igitur quod annulus iſte, quoad quantitatem materiæ,
<
lb
/>
æqualis ſit Terræ omni
<
emph
type
="
italics
"/>
PapAPepE
<
emph.end
type
="
italics
"/>
quæ globo
<
emph
type
="
italics
"/>
Pape
<
emph.end
type
="
italics
"/>
ſuperior
<
lb
/>
eſt; (
<
emph
type
="
italics
"/>
Vid. </
s
>
<
s
>Fig. </
s
>
<
s
>pag.
<
emph.end
type
="
italics
"/>
434.) & quoniam globus iſte eſt ad Terram illam
<
lb
/>
ſuperiorem ut
<
emph
type
="
italics
"/>
aCqu.
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
ACqu.-aCqu.
<
emph.end
type
="
italics
"/>
id eſt (cum Terræ diameter
<
lb
/>
minor
<
emph
type
="
italics
"/>
PC
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
aC
<
emph.end
type
="
italics
"/>
ſit ad diametrum majorem
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
ut 229 ad 230,)
<
lb
/>
ut 52441 ad 459; ſi annulus iſte Terram ſecundum Æquatorem
<
lb
/>
cingeret & uterque ſimul circa diametrum annuli revolveretur,
<
lb
/>
motus annuli eſſet ad motum globi interioris (per hujus Lem. </
s
>
<
s
>III.)
<
lb
/>
ut 459 ad 52441 & 1000000 ad 925275 conjunctim, hoc eſt,
<
lb
/>
ut 4590 ad 485223; ideoque motus annuli eſſet ad ſummam mo
<
lb
/>
tuum annuli ac globi, ut 4590 ad 489813. Unde ſi annulus glo
<
lb
/>
bo adhæreat, & motum ſuum quo ipſius Nodi ſeu puncta Æqui
<
lb
/>
noctialia regrediuntur, cum globo communicet: motus qui reſta
<
lb
/>
bit in annulo erit ad ipſius motum priorem, ut 4590 ad 489813;
<
lb
/>
& propterea motus punctorum Æquinoctialium diminuetur in
<
lb
/>
eadem ratione. </
s
>
<
s
>Erit igitur motus annuus punctorum Æqui
<
lb
/>
noctialium corporis ex annulo & globo compoſiti, ad motum </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>