Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
461
(441)
462
(442)
463
(443)
464
(444)
465
(445)
466
(446)
467
(447)
468
(448)
469
(449)
470
(450)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(446)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1056
"
type
="
section
"
level
="
1
"
n
="
635
">
<
p
>
<
s
xml:id
="
echoid-s11491
"
xml:space
="
preserve
">
<
pb
o
="
446
"
file
="
0466
"
n
="
466
"
rhead
="
GEOMETRIÆ
"/>
producta, AC, vſq; </
s
>
<
s
xml:id
="
echoid-s11492
"
xml:space
="
preserve
">ad circumferentiam circuli, DG, cui incidat
<
lb
/>
<
figure
xlink:label
="
fig-0466-01
"
xlink:href
="
fig-0466-01a
"
number
="
320
">
<
image
file
="
0466-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0466-01
"/>
</
figure
>
in, O, portio igi-
<
lb
/>
tur circuli, CAV
<
lb
/>
N, ad portionem
<
lb
/>
circuli, DAEGO,
<
lb
/>
habet rationem
<
lb
/>
compoſitá ex ea,
<
lb
/>
quam habet por-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0466-01
"
xlink:href
="
note-0466-01a
"
xml:space
="
preserve
">Deſin. 12.
<
lb
/>
1. 1.</
note
>
tio, CAVN, ad
<
lb
/>
portionem, OAE
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0466-02
"
xlink:href
="
note-0466-02a
"
xml:space
="
preserve
">Coroll. 2.
<
lb
/>
3. huius.</
note
>
G, ideſt ex ratio-
<
lb
/>
ne quadrati, VA,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0466-03
"
xlink:href
="
note-0466-03a
"
xml:space
="
preserve
">33. Sexti.
<
lb
/>
Elem.
<
lb
/>
7. huius.</
note
>
ad quadratum, A
<
lb
/>
E, & </
s
>
<
s
xml:id
="
echoid-s11493
"
xml:space
="
preserve
">ex ratione
<
lb
/>
portionis, OAEG, ad portionem, DAEGO, ideſt ex r@tione cir-
<
lb
/>
cumferentiæ, EGO, ad circumferentiam, EGD, ideſt ex ratione,
<
lb
/>
VA, ad, AE, duæ autem rationes quadrati, VA, ad qua lratum, A
<
lb
/>
E, & </
s
>
<
s
xml:id
="
echoid-s11494
"
xml:space
="
preserve
">ipſius, VA, ad, AE, componunt rationem cubi, VA, ad cu-
<
lb
/>
bum, AE, ergo portio, CAVN, ad portionem, DAEGO, erit vt
<
lb
/>
cubus, VA, ad cubum, AE, ſunt autem ſpatia, AXC, AXCD, ter-
<
lb
/>
tiæ partes dictarum portionum, ergo ſpacium, AXC, ad ſpatium,
<
lb
/>
AXCD, erit vt cubus, VA, ad cubum, AE, quoderat oſtenden-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0466-04
"
xlink:href
="
note-0466-04a
"
xml:space
="
preserve
">Exantec.</
note
>
dum.</
s
>
<
s
xml:id
="
echoid-s11495
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1058
"
type
="
section
"
level
="
1
"
n
="
636
">
<
head
xml:id
="
echoid-head666
"
xml:space
="
preserve
">THEOREMA XII. PROPOS. XII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11496
"
xml:space
="
preserve
">COmpræhenſum ſpatium ſub ſpirali, q æ eſt minor
<
lb
/>
ea, quæ ſub prima reuolutione fit, nec abet termi-
<
lb
/>
num initium ſpiralis, & </
s
>
<
s
xml:id
="
echoid-s11497
"
xml:space
="
preserve
">rectis, quæ à terminis ipſius in ſpi-
<
lb
/>
ralis initium ducuntur, ad ſectorem habentem radium æ-
<
lb
/>
qualem maiori earum, quæ à termino ad initium ſpiralis
<
lb
/>
ducuntur, arcum verò, qui intercipitur inter duas rectas
<
lb
/>
ſecundum eaſdem partes ſpiralis, habet eandem rationem,
<
lb
/>
quam rectangulum compræhenſum ſub rectis à terminis
<
lb
/>
in principium ſpiralis ductis, vna cum. </
s
>
<
s
xml:id
="
echoid-s11498
"
xml:space
="
preserve
">quadrati exceſſus,
<
lb
/>
quo maior dictarum linearum ſuperat minotẽ, ad quadra-
<
lb
/>
tum maioris linearum à terminis ad initium ſpiralis coniũ-
<
lb
/>
ctarum.</
s
>
<
s
xml:id
="
echoid-s11499
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>