Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
461
462
463
464
465
466
467
468
469
470
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/467.jpg
"
pagenum
="
439
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA IV.
<
emph.end
type
="
center
"/>
<
lb
/>
<
arrow.to.target
n
="
note468
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note468
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Cometas eſſe Luna ſuperiores & in regione Planetarum verſari.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Ut defectus Parallaxeos diurnæ extulit Cometas ſupra regiones
<
lb
/>
ſublunares, ſic ex Parallaxi annua convincitur eorum deſcenſus in
<
lb
/>
regiones Planetarum. </
s
>
<
s
>Nam Cometæ qui progrediuntur ſecun
<
lb
/>
dum ordinem ſignorum ſunt omnes, ſub exitu apparitionis, aut
<
lb
/>
ſolito tardiores aut retrogradi, ſi Terra eſt inter ipſos & Solem;
<
lb
/>
at juſto celeriores ſi Terra vergit ad oppoſitionem. </
s
>
<
s
>Et e contra,
<
lb
/>
qui pergunt contra ordinem ſignorum ſunt juſto celeriores in fine
<
lb
/>
apparitionis, ſi Terra verſatur inter ipſos & Solem; & juſto tar
<
lb
/>
diores vel retrogradi ſi Terra ſita eſt ad contrarias partes. </
s
>
<
s
>Con
<
lb
/>
tingit hoc maxime ex motu Terræ in vario ipſius ſitu, perinde ut
<
lb
/>
fit in Planetis, qui, pro motu Terræ vel conſpirante vel contra
<
lb
/>
rio, nunc retrogradi ſunt, nunc tardius progredi videntur, nunc
<
lb
/>
vero celerius. </
s
>
<
s
>Si Terra pergit ad eandem partem cum Cometa,
<
lb
/>
& motu angulari circa Solem tanto celerius fertur, ut recta per
<
lb
/>
Terram & Cometam perpetuo ducta convergat ad partes ultra
<
lb
/>
Cometam, Cometa e Terra ſpectatus, ob motum ſuum tardiorem,
<
lb
/>
apparet eſſe retrogradus; ſin Terra tardius fertur, motus Cometæ,
<
lb
/>
<
figure
id
="
id.039.01.467.1.jpg
"
xlink:href
="
039/01/467/1.jpg
"
number
="
225
"/>
<
lb
/>
(detracto motu Terræ) fit ſaltem tardior. </
s
>
<
s
>At ſi Terra pergit in
<
lb
/>
contrarias partes, Cometa exinde velocior apparet. </
s
>
<
s
>Ex accele
<
lb
/>
ratione autem vel retardatione vel motu retrogrado diſtantia Co
<
lb
/>
metæ in hunc modum colligitur. </
s
>
<
s
>Sunto
<
emph
type
="
italics
"/>
r QA, r QB, r QC
<
emph.end
type
="
italics
"/>
<
lb
/>
obſervatæ tres longitudines Cometæ, ſub initio motus, ſitque
<
lb
/>
<
emph
type
="
italics
"/>
r QF
<
emph.end
type
="
italics
"/>
longitudo ultimo obſervata, ubi Cometa videri deſinit. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>