Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
461
(441)
462
(442)
463
(443)
464
(444)
465
(445)
466
(446)
467
(447)
468
(448)
469
(449)
470
(450)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(450)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1060
"
type
="
section
"
level
="
1
"
n
="
637
">
<
p
>
<
s
xml:id
="
echoid-s11546
"
xml:space
="
preserve
">
<
pb
o
="
450
"
file
="
0470
"
n
="
470
"
rhead
="
GEOMETRIÆ
"/>
poſita ex, O℟, & </
s
>
<
s
xml:id
="
echoid-s11547
"
xml:space
="
preserve
">{1/3}. </
s
>
<
s
xml:id
="
echoid-s11548
"
xml:space
="
preserve
">℟A, & </
s
>
<
s
xml:id
="
echoid-s11549
"
xml:space
="
preserve
">ſub, ℟A, & </
s
>
<
s
xml:id
="
echoid-s11550
"
xml:space
="
preserve
">quia horum rectangulo-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0470-01
"
xlink:href
="
note-0470-01a
"
xml:space
="
preserve
">5. 1. 2.</
note
>
rum altitudines ſunt æquales, ideò trilineum, A℟Q, ad trilineum,
<
lb
/>
℟QY, erit vt, O℟, cum {2/3}. </
s
>
<
s
xml:id
="
echoid-s11551
"
xml:space
="
preserve
">℟A, ad, O℟, cum tertia parte, ℟A,
<
lb
/>
quod oſtendcre opus erat.</
s
>
<
s
xml:id
="
echoid-s11552
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1062
"
type
="
section
"
level
="
1
"
n
="
638
">
<
head
xml:id
="
echoid-head668
"
xml:space
="
preserve
">THEOREMA XIV. PROPOS. XIV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11553
"
xml:space
="
preserve
">SI duæ rectæ lineę ducantur, quarum altera parabolam
<
lb
/>
tangat, altera verò ducta axi, vel diametro eiuſdem
<
lb
/>
æquidiſtans, eandem ſecet, iuncto verò puncto contactus
<
lb
/>
cum hoc ſectionis puncto, rurſus ab hoc puncto ad latus
<
lb
/>
illi oppoſitum in facto triangulo recta producatur, quæ
<
lb
/>
curuam ſecabit parabolæ, à quo ſectionis puncto ducatur
<
lb
/>
axi, vel diametro parallela quouſq; </
s
>
<
s
xml:id
="
echoid-s11554
"
xml:space
="
preserve
">incidat in tangentem:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11555
"
xml:space
="
preserve
">Triangulum ſub eductis ad ſecantem à puncto contactus,
<
lb
/>
ad portionem parabolæ eiſdem interceptam erit, vt qua-
<
lb
/>
dratum totius tangentis ad rectangulum ſub eadem, & </
s
>
<
s
xml:id
="
echoid-s11556
"
xml:space
="
preserve
">ſub
<
lb
/>
illius abſciſſa per eam verſus punctum conta ctus per ſecũ-
<
lb
/>
dò ductam axi, vel diametro parallelam, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11557
"
xml:space
="
preserve
">qua-
<
lb
/>
drati differentiæ dictarum tangentium.</
s
>
<
s
xml:id
="
echoid-s11558
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11559
"
xml:space
="
preserve
">Sit parabola curua, BIA, quam tangat, DA, in puncto, ADB,
<
lb
/>
vero axi, vel diametro eiuſdem parallel a eandem ſecet in puncto,
<
lb
/>
B, iunctis verò, BA, à puncto, A, ducatur intra triangulum, ABD,
<
lb
/>
adlatus oppoſitum, BD, vtcumq; </
s
>
<
s
xml:id
="
echoid-s11560
"
xml:space
="
preserve
">AC, ſecans curuam, AIB, in, I,
<
lb
/>
à quo verſus tangentem, AD, ducatur, IE, axi, vel diametro iam
<
lb
/>
dicto æquidiſtans. </
s
>
<
s
xml:id
="
echoid-s11561
"
xml:space
="
preserve
">Dico igitur triangulum, ABC, ad trilineum,
<
lb
/>
ABI, eſſe vt quadratum, DA, ad rectangulum, DAE, vna cum
<
lb
/>
{1/3}. </
s
>
<
s
xml:id
="
echoid-s11562
"
xml:space
="
preserve
">quadrati, DE. </
s
>
<
s
xml:id
="
echoid-s11563
"
xml:space
="
preserve
">Exponatur parallelogrammum, FP, cuius an-
<
lb
/>
gulus, OPH, ſit æqualis angulo, ADB, &</
s
>
<
s
xml:id
="
echoid-s11564
"
xml:space
="
preserve
">, OP, æqualis ipſi, AD,
<
lb
/>
&</
s
>
<
s
xml:id
="
echoid-s11565
"
xml:space
="
preserve
">, HP, ipſi, BD, abſcindatur deinde ab, OP, verſus, O, ipſa, ON,
<
lb
/>
æqualis ipſi, AE, & </
s
>
<
s
xml:id
="
echoid-s11566
"
xml:space
="
preserve
">per, N, ducatur, GN, parallela ipſi, HP, ſe-
<
lb
/>
cans iungentem, HO, in, M, (ſint enim iuncta, H, O, puncta re-
<
lb
/>
cta, HO,) ſit verò regula, HP. </
s
>
<
s
xml:id
="
echoid-s11567
"
xml:space
="
preserve
">Quia ergo, BD, ad, DC, eſt vt, D
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0470-02
"
xlink:href
="
note-0470-02a
"
xml:space
="
preserve
">Corol. 9.
<
lb
/>
huius ad
<
lb
/>
poſteriorẽ
<
lb
/>
demonſt.
<
lb
/>
10. 1. 2.</
note
>
A, ad, AE, per conuerſionem rationis, & </
s
>
<
s
xml:id
="
echoid-s11568
"
xml:space
="
preserve
">conuertendo, CB, ad, B
<
lb
/>
D, erit vt, ED, ad, DA, ideſt vt, NP, ad, PO, ideſt vt omnia qua-
<
lb
/>
drata, GP, ad omnia quadrata, FP, regula, HP, ſed vt, CB, ad, B
<
lb
/>
D, ſic triangulus, ABC, ad triangulum, ABD, ergo vt omnia qua-
<
lb
/>
drata, GP, ad omnia quadrata, FP, ſic erit triangulus, ABC, ad
<
lb
/>
triangulum, ABD, quod ſerua,</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>