Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
471
(451)
472
(452)
473
(453)
474
(454)
475
(455)
476
(456)
477
(457)
478
(458)
479
(459)
480
(460)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(451)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1062
"
type
="
section
"
level
="
1
"
n
="
638
">
<
pb
o
="
451
"
file
="
0471
"
n
="
471
"
rhead
="
LIBER VI.
"/>
<
figure
number
="
323
">
<
image
file
="
0471-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0471-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s11569
"
xml:space
="
preserve
">Inſuper omnia quadrata, FP, ſunt tripla omnium quadratorum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0471-01
"
xlink:href
="
note-0471-01a
"
xml:space
="
preserve
">24. l. 2.</
note
>
trianguli, OHP, & </
s
>
<
s
xml:id
="
echoid-s11570
"
xml:space
="
preserve
">ideo ſunt ad illa, vt triangulus, ABD, ad ſe-
<
lb
/>
ctionem, AIB, cuius eſt triplus, quod etiam ſerua. </
s
>
<
s
xml:id
="
echoid-s11571
"
xml:space
="
preserve
">Vlterius om-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0471-02
"
xlink:href
="
note-0471-02a
"
xml:space
="
preserve
">Elicitur
<
lb
/>
ex prima
<
lb
/>
l. 4.</
note
>
nia quadrata trianguli, OHP, ad omnia quadrata trianguli, OMN,
<
lb
/>
ſunt vt cubus, PO, ad cubum, ON, ideſt vt cubus, DA, ad cubum,
<
lb
/>
AE, ideſt vt ſectio, AIB, ad ſectionem, AXI, (ſunt enim tertiæ par-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0471-03
"
xlink:href
="
note-0471-03a
"
xml:space
="
preserve
">F. Cor. 22.
<
lb
/>
l. 2.</
note
>
tes triangulorum, ABD, AIE, qui inter ſe ſunt, vt cubi, DA, AE,)
<
lb
/>
ergo ex &</
s
>
<
s
xml:id
="
echoid-s11572
"
xml:space
="
preserve
">quali omnia quadrata, GP, ad omnia quadrata trianguli,
<
lb
/>
OMN, erunt vt triangulus, ABC, ad ſectionem, AXI, ſed omnia
<
lb
/>
quadrata, GP, ad omnia quadrata trianguli, OHP, erant vt idem
<
lb
/>
triangulum, ABC, ad ſectionem, AIB, ergo omnia quadrata, G
<
lb
/>
P, ad reliquum, demptis omnibus quadratis trianguli, OMN, ab
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0471-04
"
xlink:href
="
note-0471-04a
"
xml:space
="
preserve
">28. l. 2.</
note
>
omnibus quadratis trianguli, OHP, ſcilicet ad omnia quadrati tra-
<
lb
/>
pezij, MHPN, erunt vt triangulus, ABC, ad reliquum, dempta
<
lb
/>
ſectione, AXI, a ſectione, AIB, ſcilicet ad trilineum, AIB, ſed om-
<
lb
/>
nia quadrata, GP, ad omnia quadrata trapezij, MHPN, ſunt vt
<
lb
/>
quadratum, HP, ad rectangulum, ſub, HP, MN, vna cum {1/5}. </
s
>
<
s
xml:id
="
echoid-s11573
"
xml:space
="
preserve
">qua-
<
lb
/>
drati, GM, ideſt vt quadratum, PO, ad rectangulum ſub, PO, ON,
<
lb
/>
vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11574
"
xml:space
="
preserve
">quadrati, PN, ergo triangulus, ABC, ad trilineum, A
<
lb
/>
BI, eric vt quadratum, PO, ad rectangulum, PON, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11575
"
xml:space
="
preserve
">qua-
<
lb
/>
drati, PN, ideſt vt quadratum, DA, ad rectangulum, DAE, vna
<
lb
/>
cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11576
"
xml:space
="
preserve
">quadrati, DE, quod erat oſtendendum.</
s
>
<
s
xml:id
="
echoid-s11577
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1065
"
type
="
section
"
level
="
1
"
n
="
639
">
<
head
xml:id
="
echoid-head669
"
xml:space
="
preserve
">THEOREMA XV. PROPOS. XV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11578
"
xml:space
="
preserve
">SPatium ſub ſpirali ex quacunq; </
s
>
<
s
xml:id
="
echoid-s11579
"
xml:space
="
preserve
">reuolutione genita,
<
lb
/>
præterquam ex prima, & </
s
>
<
s
xml:id
="
echoid-s11580
"
xml:space
="
preserve
">recta eiuſdem numeri </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>