Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
471
(451)
472
(452)
473
(453)
474
(454)
475
(455)
476
(456)
477
(457)
478
(458)
479
(459)
480
(460)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(454)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1065
"
type
="
section
"
level
="
1
"
n
="
639
">
<
p
>
<
s
xml:id
="
echoid-s11625
"
xml:space
="
preserve
">
<
pb
o
="
454
"
file
="
0474
"
n
="
474
"
rhead
="
GEOMETRIÆ
"/>
ergo, ΦΖ, erit æqualis circumferentiæ, IK, & </
s
>
<
s
xml:id
="
echoid-s11626
"
xml:space
="
preserve
">eſt altitudo triangu-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-01
"
xlink:href
="
note-0474-01a
"
xml:space
="
preserve
">Corol. 2.
<
lb
/>
3. huius.</
note
>
li, LΦ Ζ, ideſt L4, æqualis ipſi, kA, ergo triangulus, LΦΖ, ſectori,
<
lb
/>
KAI, æqualis erit. </
s
>
<
s
xml:id
="
echoid-s11627
"
xml:space
="
preserve
">Eodem modo oſtendemus triangulum, LVB,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-02
"
xlink:href
="
note-0474-02a
"
xml:space
="
preserve
">Elici tur
<
lb
/>
ex Cor. 1.
<
lb
/>
3. huius.</
note
>
æquari ſectori, AXS, & </
s
>
<
s
xml:id
="
echoid-s11628
"
xml:space
="
preserve
">triangulum, LO7, ſectori, ATM, & </
s
>
<
s
xml:id
="
echoid-s11629
"
xml:space
="
preserve
">tan-
<
lb
/>
dem triangulum, Ab
<
emph
style
="
sub
">9</
emph
>
Ω, ſectori, AHG, ergo figura inſcripta trili-
<
lb
/>
neo, LQΩ, æqualis erit inſcriptæ ſpatio, GMSIB, eſt autem illa
<
lb
/>
maior ſpatio, GMSIB, èrgo figura inſcripta ſpatio, GMSIB, erit
<
lb
/>
eodem ſpatio, GMSIB, maior, quod eſt abſurdum, non ergo tri-
<
lb
/>
lineus, LQΩ, maior eſt ſpatio, GMSIB.</
s
>
<
s
xml:id
="
echoid-s11630
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11631
"
xml:space
="
preserve
">Sed dico neq; </
s
>
<
s
xml:id
="
echoid-s11632
"
xml:space
="
preserve
">eſſe minorem eodem ſpatio, GMSIB, ſi enim eſt
<
lb
/>
ſit adhuc defectus ſpatium, 8, modo autem ſupra adhibito circum-
<
lb
/>
ſcribatur trilineo, ΙΩQ, figura, & </
s
>
<
s
xml:id
="
echoid-s11633
"
xml:space
="
preserve
">alia inſcribatur ex triangulis
<
lb
/>
compoſita, ita vt circumſcripta fuperet inſcriptam minori ſpatio,
<
lb
/>
quam ſit, 8, deſeruiant autem nobis iam in prima parte deſcriptæ
<
lb
/>
figuræ, tum intra, & </
s
>
<
s
xml:id
="
echoid-s11634
"
xml:space
="
preserve
">extra trilineum, LΩQ, tum intra, vel extra
<
lb
/>
ſpatium, GMSIB. </
s
>
<
s
xml:id
="
echoid-s11635
"
xml:space
="
preserve
">Igitur figura circumſcripta trilineo, LΩQ, ſu-
<
lb
/>
perabit eundem trilineum multò minori ſpatio, quam ſit, 8, nem-
<
lb
/>
pè quam ſpatium, GMSIB, excedat trilineum, LΩQ, ergo figura
<
lb
/>
huic trilineo circumſcripta erit minor ſpatio, GMSIB, oſtendemus
<
lb
/>
autem eandem ęquari figurę circumſcriptæ eidem ſpatio, GMSIB,
<
lb
/>
modo ſuprapoſito, ergo figura circumſcripta ſpatio, GMSIB, erit
<
lb
/>
eodem minor, quod eſt abſurdum, igitur trilineus, LΩQ, neq; </
s
>
<
s
xml:id
="
echoid-s11636
"
xml:space
="
preserve
">eſt
<
lb
/>
maior, neq; </
s
>
<
s
xml:id
="
echoid-s11637
"
xml:space
="
preserve
">minor ſpatio, GMSIB, ergo eſt eidem æqualis, & </
s
>
<
s
xml:id
="
echoid-s11638
"
xml:space
="
preserve
">eſt
<
lb
/>
triangulus, LQΣ, æqualis circulo, CDFB, ergo circulus, CDFB,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-03
"
xlink:href
="
note-0474-03a
"
xml:space
="
preserve
">Ex ant.</
note
>
ad ſpatium, GMSIB, erit vt triangulus, LQΣ, ad tr lineum, LQΩ,
<
lb
/>
eſt autem triangulus, LQΣ, ad trilineum, LQΩ, vt quadratum, P
<
lb
/>
Lad rectangulum, ΡLβ, vnam {1/3}. </
s
>
<
s
xml:id
="
echoid-s11639
"
xml:space
="
preserve
">quadrati, Ρβ, ergo circulus, CD
<
lb
/>
FB, ad ſpatium, GMSIB, erit vt quadratum, PL, ad rectangulum,
<
lb
/>
ΡLβ, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11640
"
xml:space
="
preserve
">quadrati, Ρβ, ideſt vt quadratum, BA, ad rectan-
<
lb
/>
gulum, BAG, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11641
"
xml:space
="
preserve
">quadrati, GB, quod erat nobis oſtendẽ-
<
lb
/>
dum.</
s
>
<
s
xml:id
="
echoid-s11642
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1068
"
type
="
section
"
level
="
1
"
n
="
640
">
<
head
xml:id
="
echoid-head670
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11643
"
xml:space
="
preserve
">_P_Oterant autem, vt in Prop. </
s
>
<
s
xml:id
="
echoid-s11644
"
xml:space
="
preserve
">5. </
s
>
<
s
xml:id
="
echoid-s11645
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s11646
"
xml:space
="
preserve
">6. </
s
>
<
s
xml:id
="
echoid-s11647
"
xml:space
="
preserve
">huius, componi figuræ, quæ
<
lb
/>
circumſcrihuntur, & </
s
>
<
s
xml:id
="
echoid-s11648
"
xml:space
="
preserve
">inſcrihuntur, ex trapezijs, in quo caſu,
<
lb
/>
circumſcriptio, & </
s
>
<
s
xml:id
="
echoid-s11649
"
xml:space
="
preserve
">inſcriptio intelligi dehuiſſet cir ca trilineum, Q
<
lb
/>
ΩΣ, vel in ſupra demonſtratis propoſitionibus poterant dicta figuræ
<
lb
/>
ex triangulis componi, veluti in hac effectum eſt, & </
s
>
<
s
xml:id
="
echoid-s11650
"
xml:space
="
preserve
">tunc circumſcri-
<
lb
/>
ptio, & </
s
>
<
s
xml:id
="
echoid-s11651
"
xml:space
="
preserve
">inſcriptio ſectionibus, FLH, in Schem ate poſterioris demõſtra-
<
lb
/>
t ionis Prop. </
s
>
<
s
xml:id
="
echoid-s11652
"
xml:space
="
preserve
">9. </
s
>
<
s
xml:id
="
echoid-s11653
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s11654
"
xml:space
="
preserve
">H℟F, in Propoſ. </
s
>
<
s
xml:id
="
echoid-s11655
"
xml:space
="
preserve
">10. </
s
>
<
s
xml:id
="
echoid-s11656
"
xml:space
="
preserve
">fieridebuiſſet intelligi, banc
<
lb
/>
tamen varietatem proſequutus ſum, vt pateat vtroq; </
s
>
<
s
xml:id
="
echoid-s11657
"
xml:space
="
preserve
">modo nos, quod
<
lb
/>
inquirimus, obtinere poſſe.</
s
>
<
s
xml:id
="
echoid-s11658
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>