Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
471
472
473
474
475
476
477
478
479
480
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/475.jpg
"
pagenum
="
447
"/>
intervalla quaterna diviſas
<
emph
type
="
italics
"/>
e,
<
emph.end
type
="
italics
"/>
2
<
emph
type
="
italics
"/>
e,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>& ſic deinceps; id eſt, ita
<
lb
/>
<
arrow.to.target
n
="
note476
"/>
ut ſit
<
emph
type
="
italics
"/>
b=(AH-BI/HI), 2b=(BI-CK/IK), 3b=(CK-DL/KL),
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>dein
<
lb
/>
<
emph
type
="
italics
"/>
c=(b-2b/HK), 2c=(2b-3b/IL), 3c=(3b-4b/KM),
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>Poſtea
<
emph
type
="
italics
"/>
d=(c-2c/HL),
<
lb
/>
2d=(2c-3c/IM),
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>Inventis differentiis, dic
<
emph
type
="
italics
"/>
AH=a, -HS=p,
<
lb
/>
p
<
emph.end
type
="
italics
"/>
in -
<
emph
type
="
italics
"/>
IS=q, q
<
emph.end
type
="
italics
"/>
in +
<
emph
type
="
italics
"/>
SK=r, r
<
emph.end
type
="
italics
"/>
in +
<
emph
type
="
italics
"/>
SL=s, s
<
emph.end
type
="
italics
"/>
in +
<
emph
type
="
italics
"/>
SM=t
<
emph.end
type
="
italics
"/>
;
<
lb
/>
pergendo ſcilicet ad uſque perpendiculum penultimum
<
emph
type
="
italics
"/>
ME,
<
emph.end
type
="
italics
"/>
& erit
<
lb
/>
ordinatim applicata
<
emph
type
="
italics
"/>
RS=a+bp+cq+dr+es+ft,
<
emph.end
type
="
italics
"/>
&c. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note476
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Hinc areæ curvarum omnium inveniri poſſunt quampro
<
lb
/>
xime. </
s
>
<
s
>Nam ſi curvæ cujuſvis quadrandæ inveniantur puncta ali
<
lb
/>
quot, & Parabola per eadem duci intelligatur: erit area Parabolæ
<
lb
/>
hujus eadem quam proxime cum area curvæ illius quadrandæ. </
s
>
<
s
>
<
lb
/>
Poteſt autem Parabola, per Methodos notiſſimas, ſemper quadrari
<
lb
/>
Geometrice. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA VI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Ex obſervatis aliquot locis Cometæ invenive locum ejus ad
<
lb
/>
tempus quodvis intermedium datum.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Deſignent
<
emph
type
="
italics
"/>
HI, IK, KL, LM
<
emph.end
type
="
italics
"/>
tempora inter obſervationes,
<
lb
/>
<
emph
type
="
italics
"/>
(in Fig. </
s
>
<
s
>præced.) HA, IB, KC, LD, ME
<
emph.end
type
="
italics
"/>
obſervatas quinque
<
lb
/>
longitudines Cometæ,
<
emph
type
="
italics
"/>
HS
<
emph.end
type
="
italics
"/>
tempus datum inter obſervationem pri
<
lb
/>
mam & longitudinem quæſitam. </
s
>
<
s
>Et ſi per puncta
<
emph
type
="
italics
"/>
A, B, C, D, E
<
emph.end
type
="
italics
"/>
<
lb
/>
duci intelligatur curva regularis
<
emph
type
="
italics
"/>
ABCDE
<
emph.end
type
="
italics
"/>
; & per Lemma ſupe
<
lb
/>
rius inveniatur ejus ordinatim applicata
<
emph
type
="
italics
"/>
RS,
<
emph.end
type
="
italics
"/>
erit
<
emph
type
="
italics
"/>
RS
<
emph.end
type
="
italics
"/>
longitudo
<
lb
/>
quæſita. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Eadem methodo ex obſervatis quinque latitudinibus invenitur
<
lb
/>
latitudo ad tempus datum. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Si longitudinum obſervatarum parvæ ſint differentiæ, puta gra
<
lb
/>
duum tantum 4 vel 5; ſuffecerint obſervationes tres vel quatuor
<
lb
/>
ad inveniendam longitudinem & latitudinem novam. </
s
>
<
s
>Sin majores
<
lb
/>
ſint differentiæ, puta graduum 10 vel 20, debebunt obſervationes
<
lb
/>
quinque adhiberi. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>