Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
471
471
472
472
473
473
474
474
475
475
476
476
477
477
478
478
479
479
480
480
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/476.jpg" pagenum="448"/>
                    <arrow.to.target n="note477"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note477"/>
                  DE MUNDI
                    <lb/>
                  SYSTEMATE</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  LEMMA VII.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Per datum punctum
                    <emph.end type="italics"/>
                  P
                    <emph type="italics"/>
                  ducere rectam lineam
                    <emph.end type="italics"/>
                  BC,
                    <emph type="italics"/>
                  cujus partes
                    <emph.end type="italics"/>
                    <lb/>
                  PB, PC,
                    <emph type="italics"/>
                  rectis duabus poſitione datis
                    <emph.end type="italics"/>
                  AB, AC
                    <emph type="italics"/>
                  abſciſſæ, da­
                    <lb/>
                  tam habeant rationem ad invicem.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <figure id="id.039.01.476.1.jpg" xlink:href="039/01/476/1.jpg" number="228"/>
                <p type="main">
                  <s>A puncto illo
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  ad rectarum al­
                    <lb/>
                  terutram
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  ducatur recta quævis
                    <lb/>
                    <emph type="italics"/>
                  PD,
                    <emph.end type="italics"/>
                  & producatur eadem verſus
                    <lb/>
                  rectam alteram
                    <emph type="italics"/>
                  AC
                    <emph.end type="italics"/>
                  uſque ad
                    <emph type="italics"/>
                  E,
                    <emph.end type="italics"/>
                  ut
                    <lb/>
                  ſit
                    <emph type="italics"/>
                  PE
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  PD
                    <emph.end type="italics"/>
                  in data illa ratione. </s>
                  <s>
                    <lb/>
                  Ipſi
                    <emph type="italics"/>
                  AD
                    <emph.end type="italics"/>
                  parallela ſit
                    <emph type="italics"/>
                  EC
                    <emph.end type="italics"/>
                  ; & ſi
                    <lb/>
                  agatur
                    <emph type="italics"/>
                  CPB,
                    <emph.end type="italics"/>
                  erit
                    <emph type="italics"/>
                  PC
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  PB
                    <emph.end type="italics"/>
                  ut
                    <lb/>
                    <emph type="italics"/>
                  PE
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  PD. q.E.F.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  LEMMA VIII.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Sit
                    <emph.end type="italics"/>
                  ABC
                    <emph type="italics"/>
                  Parabola umbilicum habens
                    <emph.end type="italics"/>
                  S.
                    <emph type="italics"/>
                  Chorda
                    <emph.end type="italics"/>
                  AC
                    <emph type="italics"/>
                  biſecta
                    <lb/>
                  in
                    <emph.end type="italics"/>
                  I
                    <emph type="italics"/>
                  abſcindatur ſegmentum
                    <emph.end type="italics"/>
                  ABCI,
                    <emph type="italics"/>
                  cujus diameter ſit
                    <emph.end type="italics"/>
                  I
                    <foreign lang="grc">μ</foreign>
                    <emph type="italics"/>
                  &
                    <lb/>
                  vertex
                    <emph.end type="italics"/>
                    <foreign lang="grc">μ</foreign>
                  .
                    <emph type="italics"/>
                  In
                    <emph.end type="italics"/>
                  I
                    <foreign lang="grc">μ</foreign>
                    <emph type="italics"/>
                  producta capiatur
                    <emph.end type="italics"/>
                    <foreign lang="grc">μ</foreign>
                  O
                    <emph type="italics"/>
                  æqualis dimidio ipſius
                    <emph.end type="italics"/>
                    <lb/>
                    <figure id="id.039.01.476.2.jpg" xlink:href="039/01/476/2.jpg" number="229"/>
                    <lb/>
                  I
                    <foreign lang="grc">μ</foreign>
                  .
                    <emph type="italics"/>
                  Jungatur
                    <emph.end type="italics"/>
                  OS,
                    <emph type="italics"/>
                  & producatur ea ad
                    <foreign lang="grc">ξ</foreign>
                  , ut ſit
                    <emph.end type="italics"/>
                  S
                    <foreign lang="grc">ξ</foreign>
                    <emph type="italics"/>
                  æqualis
                    <emph.end type="italics"/>
                    <lb/>
                  2SO.
                    <emph type="italics"/>
                  Et ſi Cometa
                    <emph.end type="italics"/>
                  B
                    <emph type="italics"/>
                  moveatur in arcu
                    <emph.end type="italics"/>
                  CBA,
                    <emph type="italics"/>
                  & agatur
                    <emph.end type="italics"/>
                    <lb/>
                    <foreign lang="grc">ξ</foreign>
                  B
                    <emph type="italics"/>
                  ſecans
                    <emph.end type="italics"/>
                  AC
                    <emph type="italics"/>
                  in
                    <emph.end type="italics"/>
                  E:
                    <emph type="italics"/>
                  dico quod punctum
                    <emph.end type="italics"/>
                  E
                    <emph type="italics"/>
                  abſcindet de chordo
                    <emph.end type="italics"/>
                    <lb/>
                  AC
                    <emph type="italics"/>
                  ſegmentum
                    <emph.end type="italics"/>
                  AE
                    <emph type="italics"/>
                  tempori proportionale quamproxime.
                    <emph.end type="italics"/>
                  </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>