Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
471
472
473
474
475
476
477
478
479
480
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/476.jpg
"
pagenum
="
448
"/>
<
arrow.to.target
n
="
note477
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note477
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA VII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Per datum punctum
<
emph.end
type
="
italics
"/>
P
<
emph
type
="
italics
"/>
ducere rectam lineam
<
emph.end
type
="
italics
"/>
BC,
<
emph
type
="
italics
"/>
cujus partes
<
emph.end
type
="
italics
"/>
<
lb
/>
PB, PC,
<
emph
type
="
italics
"/>
rectis duabus poſitione datis
<
emph.end
type
="
italics
"/>
AB, AC
<
emph
type
="
italics
"/>
abſciſſæ, da
<
lb
/>
tam habeant rationem ad invicem.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
figure
id
="
id.039.01.476.1.jpg
"
xlink:href
="
039/01/476/1.jpg
"
number
="
228
"/>
<
p
type
="
main
">
<
s
>A puncto illo
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ad rectarum al
<
lb
/>
terutram
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
ducatur recta quævis
<
lb
/>
<
emph
type
="
italics
"/>
PD,
<
emph.end
type
="
italics
"/>
& producatur eadem verſus
<
lb
/>
rectam alteram
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
uſque ad
<
emph
type
="
italics
"/>
E,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
ſit
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
in data illa ratione. </
s
>
<
s
>
<
lb
/>
Ipſi
<
emph
type
="
italics
"/>
AD
<
emph.end
type
="
italics
"/>
parallela ſit
<
emph
type
="
italics
"/>
EC
<
emph.end
type
="
italics
"/>
; & ſi
<
lb
/>
agatur
<
emph
type
="
italics
"/>
CPB,
<
emph.end
type
="
italics
"/>
erit
<
emph
type
="
italics
"/>
PC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PB
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PD. q.E.F.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA VIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Sit
<
emph.end
type
="
italics
"/>
ABC
<
emph
type
="
italics
"/>
Parabola umbilicum habens
<
emph.end
type
="
italics
"/>
S.
<
emph
type
="
italics
"/>
Chorda
<
emph.end
type
="
italics
"/>
AC
<
emph
type
="
italics
"/>
biſecta
<
lb
/>
in
<
emph.end
type
="
italics
"/>
I
<
emph
type
="
italics
"/>
abſcindatur ſegmentum
<
emph.end
type
="
italics
"/>
ABCI,
<
emph
type
="
italics
"/>
cujus diameter ſit
<
emph.end
type
="
italics
"/>
I
<
foreign
lang
="
grc
">μ</
foreign
>
<
emph
type
="
italics
"/>
&
<
lb
/>
vertex
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
.
<
emph
type
="
italics
"/>
In
<
emph.end
type
="
italics
"/>
I
<
foreign
lang
="
grc
">μ</
foreign
>
<
emph
type
="
italics
"/>
producta capiatur
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
O
<
emph
type
="
italics
"/>
æqualis dimidio ipſius
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.476.2.jpg
"
xlink:href
="
039/01/476/2.jpg
"
number
="
229
"/>
<
lb
/>
I
<
foreign
lang
="
grc
">μ</
foreign
>
.
<
emph
type
="
italics
"/>
Jungatur
<
emph.end
type
="
italics
"/>
OS,
<
emph
type
="
italics
"/>
& producatur ea ad
<
foreign
lang
="
grc
">ξ</
foreign
>
, ut ſit
<
emph.end
type
="
italics
"/>
S
<
foreign
lang
="
grc
">ξ</
foreign
>
<
emph
type
="
italics
"/>
æqualis
<
emph.end
type
="
italics
"/>
<
lb
/>
2SO.
<
emph
type
="
italics
"/>
Et ſi Cometa
<
emph.end
type
="
italics
"/>
B
<
emph
type
="
italics
"/>
moveatur in arcu
<
emph.end
type
="
italics
"/>
CBA,
<
emph
type
="
italics
"/>
& agatur
<
emph.end
type
="
italics
"/>
<
lb
/>
<
foreign
lang
="
grc
">ξ</
foreign
>
B
<
emph
type
="
italics
"/>
ſecans
<
emph.end
type
="
italics
"/>
AC
<
emph
type
="
italics
"/>
in
<
emph.end
type
="
italics
"/>
E:
<
emph
type
="
italics
"/>
dico quod punctum
<
emph.end
type
="
italics
"/>
E
<
emph
type
="
italics
"/>
abſcindet de chordo
<
emph.end
type
="
italics
"/>
<
lb
/>
AC
<
emph
type
="
italics
"/>
ſegmentum
<
emph.end
type
="
italics
"/>
AE
<
emph
type
="
italics
"/>
tempori proportionale quamproxime.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>