Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
471
472
473
474
475
476
477
478
479
480
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/477.jpg
"
pagenum
="
449
"/>
<
p
type
="
main
">
<
s
>Jungatur enim
<
emph
type
="
italics
"/>
EO
<
emph.end
type
="
italics
"/>
ſecans arcum Parabolicum
<
emph
type
="
italics
"/>
ABC
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
Y,
<
emph.end
type
="
italics
"/>
& aga
<
lb
/>
<
arrow.to.target
n
="
note478
"/>
tur
<
foreign
lang
="
grc
">μ</
foreign
>
<
emph
type
="
italics
"/>
X
<
emph.end
type
="
italics
"/>
quæ tangat eundem arcum in vertice
<
foreign
lang
="
grc
">μ</
foreign
>
& actæ
<
emph
type
="
italics
"/>
EO
<
emph.end
type
="
italics
"/>
occur
<
lb
/>
rat in
<
emph
type
="
italics
"/>
X
<
emph.end
type
="
italics
"/>
; & erit area curvilinea
<
emph
type
="
italics
"/>
AEX
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
ad aream curvilineam
<
lb
/>
<
emph
type
="
italics
"/>
ACY
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AC.
<
emph.end
type
="
italics
"/>
Ideoque cum triangulum
<
emph
type
="
italics
"/>
ASE
<
emph.end
type
="
italics
"/>
ſit
<
lb
/>
ad triangulum
<
emph
type
="
italics
"/>
ASC
<
emph.end
type
="
italics
"/>
in eadem ratione, erit area tota
<
emph
type
="
italics
"/>
ASEX
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
<
lb
/>
ad aream totam
<
emph
type
="
italics
"/>
ASCY
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AC.
<
emph.end
type
="
italics
"/>
Cum autem
<
foreign
lang
="
grc
">ξ</
foreign
>
<
emph
type
="
italics
"/>
O
<
emph.end
type
="
italics
"/>
<
lb
/>
ſit ad
<
emph
type
="
italics
"/>
SO
<
emph.end
type
="
italics
"/>
ut 3 ad 1, &
<
emph
type
="
italics
"/>
EO
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
XO
<
emph.end
type
="
italics
"/>
in eadem ratione, erit
<
emph
type
="
italics
"/>
SX
<
emph.end
type
="
italics
"/>
<
lb
/>
ipſi
<
emph
type
="
italics
"/>
EB
<
emph.end
type
="
italics
"/>
parallela: & propterea ſi jungatur
<
emph
type
="
italics
"/>
BX,
<
emph.end
type
="
italics
"/>
erit triangulum
<
lb
/>
<
emph
type
="
italics
"/>
SEB
<
emph.end
type
="
italics
"/>
triangulo
<
emph
type
="
italics
"/>
XEB
<
emph.end
type
="
italics
"/>
æquale. </
s
>
<
s
>Unde ſi ad aream
<
emph
type
="
italics
"/>
ASEX
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
<
lb
/>
addatur triangulum
<
emph
type
="
italics
"/>
EXB,
<
emph.end
type
="
italics
"/>
& de ſumma auferatur triangulum
<
lb
/>
<
emph
type
="
italics
"/>
SEB,
<
emph.end
type
="
italics
"/>
manebit area
<
emph
type
="
italics
"/>
ASBX
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
areæ
<
emph
type
="
italics
"/>
ASEX
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
æqualis,
<
lb
/>
atque adeo ad aream
<
emph
type
="
italics
"/>
ASCY
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AC.
<
emph.end
type
="
italics
"/>
Sed areæ
<
lb
/>
<
emph
type
="
italics
"/>
ASBX
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
æqualis eſt area
<
emph
type
="
italics
"/>
ASBY
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
quamproxime, & hæc
<
lb
/>
area
<
emph
type
="
italics
"/>
ASBY
<
foreign
lang
="
grc
">μ</
foreign
>
A
<
emph.end
type
="
italics
"/>
eſt ad aream
<
emph
type
="
italics
"/>
ASCY
<
foreign
lang
="
grc
">μ</
foreign
>
A,
<
emph.end
type
="
italics
"/>
ut tempus deſcripti
<
lb
/>
arcus
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
ad tempus deſcripti arcus totius
<
emph
type
="
italics
"/>
AC.
<
emph.end
type
="
italics
"/>
Ideoque
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
<
lb
/>
eſt ad
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
in ratione temporum quamproxime.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note478
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Ubi punctum
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
incidit in Parabolæ verticem
<
foreign
lang
="
grc
">μ</
foreign
>
, eſt
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
in ratione temporum accurate. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Si jungatur
<
foreign
lang
="
grc
">μξ</
foreign
>
ſecans
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
in
<
foreign
lang
="
grc
">δ</
foreign
>
& in ea capiatur
<
foreign
lang
="
grc
">ξ</
foreign
>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
quæ ſit
<
lb
/>
ad
<
foreign
lang
="
grc
">μ</
foreign
>
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
ut 27
<
emph
type
="
italics
"/>
MI
<
emph.end
type
="
italics
"/>
ad 16
<
emph
type
="
italics
"/>
M
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
: acta
<
emph
type
="
italics
"/>
Bn
<
emph.end
type
="
italics
"/>
ſecabit chordam
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
in
<
lb
/>
ratione temporum magis accurate quam prius. </
s
>
<
s
>Jaceat autem
<
lb
/>
punctum
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
ultra punctum
<
foreign
lang
="
grc
">ξ</
foreign
>
, ſi punctum
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
magis diſtat a vertice
<
lb
/>
principali Parabolæ quam punctum
<
foreign
lang
="
grc
">μ</
foreign
>
; & citra, ſi minus diſtat ab
<
lb
/>
eodem vertice. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA IX.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Rectæ
<
emph.end
type
="
italics
"/>
I
<
foreign
lang
="
grc
">μ</
foreign
>
&
<
foreign
lang
="
grc
">μ</
foreign
>
M
<
emph
type
="
italics
"/>
& longitudo (AIC/4S
<
foreign
lang
="
grc
">μ</
foreign
>
) æquantur inter ſe.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam 4
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
eſt latus rectum Parabolæ pertinens ad verti
<
lb
/>
cem
<
foreign
lang
="
grc
">μ</
foreign
>
. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>