Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
471
(451)
472
(452)
473
(453)
474
(454)
475
(455)
476
(456)
477
(457)
478
(458)
479
(459)
480
(460)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(457)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1069
"
type
="
section
"
level
="
1
"
n
="
641
">
<
pb
o
="
457
"
file
="
0477
"
n
="
477
"
rhead
="
LIBER VI.
"/>
</
div
>
<
div
xml:id
="
echoid-div1071
"
type
="
section
"
level
="
1
"
n
="
642
">
<
head
xml:id
="
echoid-head672
"
xml:space
="
preserve
">THEOREMA XVII. PROPOS. XVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11697
"
xml:space
="
preserve
">COmpræhenſ@m ſpatium ſub ſpirali, quæ eſt minor ea,
<
lb
/>
quæ ſub vna reuolutione fit, nec habet terminum
<
lb
/>
initium ſpiralis, & </
s
>
<
s
xml:id
="
echoid-s11698
"
xml:space
="
preserve
">rectis, quæ à terminis ipſius in reuolu-
<
lb
/>
tionis initium ducuntur ad ſectorem habentem radium æ-
<
lb
/>
qualem maiori earum, quę à termino ad initium reuolutio-
<
lb
/>
nis ducitur, arcum verò, qui intercipitur inter duas rectas
<
lb
/>
ſecundum eaſdem partem ſpiralis; </
s
>
<
s
xml:id
="
echoid-s11699
"
xml:space
="
preserve
">habet eandem rationẽ,
<
lb
/>
quam rectangulum compræhenſum ſub rectis à terminis
<
lb
/>
ad initium reuolutionis ductis, vna cum tertia parte qua-
<
lb
/>
drati exceſſus, quo maior dictarum linearum ſuperat mi-
<
lb
/>
norem, ad quadratum maioris earundem.</
s
>
<
s
xml:id
="
echoid-s11700
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11701
"
xml:space
="
preserve
">In eadem antecedentis figura ſupponamus arſumptam, IS, por-
<
lb
/>
tionem ſpiralis in vna reuolutione genitæ, quæ non habcat termi-
<
lb
/>
num initium talis ſpiralis, a cuius extremis punctis, I, S, ſint du-
<
lb
/>
ctæ ad, A, initium reuolutionis ipſæ, SA, IA, & </
s
>
<
s
xml:id
="
echoid-s11702
"
xml:space
="
preserve
">ſit ſector, IAR,
<
lb
/>
cuius ſemidiameter ſit æqual s maiori ductarum, IA, AS, nempè
<
lb
/>
ipſi, IA. </
s
>
<
s
xml:id
="
echoid-s11703
"
xml:space
="
preserve
">Dico ſectorem, IAR, ad trilineum, IAS, eſſe vt quadra-
<
lb
/>
tum, RA, ad rectangulum, RAS, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11704
"
xml:space
="
preserve
">quadrati, RS, (vta-
<
lb
/>
mur conſtructis in eadem figura) Sector igitur, AIRεKA, eſt æqua-
<
lb
/>
lis triangulo, LZ {12/ }, vt in antecedenti oſtenſum eſt, eodem modo
<
lb
/>
probabimus triangulum, L+{13/ }, eſſe æqualem ſectori, ARεKA,
<
lb
/>
ergo reliquus triangulus, LZ+, erit æqualis reliquo ſectori, IAR;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11705
"
xml:space
="
preserve
">ſimiliter iuxta antecedentem oſtendemus ſpatium, AISMGA, eſſe
<
lb
/>
æqualem trilineo, LΖΩ, & </
s
>
<
s
xml:id
="
echoid-s11706
"
xml:space
="
preserve
">ſpatium, ASMGA, eſſe æqualem tri-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0477-01
"
xlink:href
="
note-0477-01a
"
xml:space
="
preserve
">14. huius.</
note
>
lineo, LVΩ ergo reliquum ſpatium, IAS, erit æquale trilineo, LZ
<
lb
/>
V, ergo ſector, IAR, ad trilineum, LZV, erit vt triangulus LZ+,
<
lb
/>
ad trilineum, LZV, ideſt vt quadratum, L4, ad rectangulum ſub,
<
lb
/>
4L3, cum {1/3}, quadrati, 34, ideſt vt quadratum, IA, vel, RA, ad re-
<
lb
/>
ctangulum ſub, RA, A
<
emph
style
="
sub
">c</
emph
>
, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11707
"
xml:space
="
preserve
">quadrati, RS, quod oſtende-
<
lb
/>
re opus erat.</
s
>
<
s
xml:id
="
echoid-s11708
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1073
"
type
="
section
"
level
="
1
"
n
="
643
">
<
head
xml:id
="
echoid-head673
"
xml:space
="
preserve
">THEOREMA XVIII. PROPOS. XVIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s11709
"
xml:space
="
preserve
">TRilineum, IRS, ad trilineum, ISX, erit vt, SA, cum
<
lb
/>
{2/3}. </
s
>
<
s
xml:id
="
echoid-s11710
"
xml:space
="
preserve
">SR, ad, SA, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s11711
"
xml:space
="
preserve
">SR.</
s
>
<
s
xml:id
="
echoid-s11712
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>