Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
471
472
473
474
475
476
477
478
479
480
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/478.jpg
"
pagenum
="
450
"/>
<
arrow.to.target
n
="
note479
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note479
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA X.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si producatur
<
emph.end
type
="
italics
"/>
S
<
foreign
lang
="
grc
">μ</
foreign
>
<
emph
type
="
italics
"/>
ad
<
emph.end
type
="
italics
"/>
N & P,
<
emph
type
="
italics
"/>
ut
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
N
<
emph
type
="
italics
"/>
ſit pars tertia ipſius
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
I,
<
lb
/>
& SP
<
emph
type
="
italics
"/>
ſit ad
<
emph.end
type
="
italics
"/>
SN
<
emph
type
="
italics
"/>
ut
<
emph.end
type
="
italics
"/>
SN
<
emph
type
="
italics
"/>
ad
<
emph.end
type
="
italics
"/>
S
<
foreign
lang
="
grc
">μ</
foreign
>
.
<
emph
type
="
italics
"/>
Cometa, quo tempore deſcri
<
lb
/>
bit arcum
<
emph.end
type
="
italics
"/>
A
<
foreign
lang
="
grc
">μ</
foreign
>
C,
<
emph
type
="
italics
"/>
ſi progrederetur ea ſemper cum velocitate
<
lb
/>
quam habet in altitudine ipſi
<
emph.end
type
="
italics
"/>
SP
<
emph
type
="
italics
"/>
æquali, deſcriberet longitudi
<
lb
/>
nem æqualem chordæ
<
emph.end
type
="
italics
"/>
AC. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam ſi Cometa velocitate quam habet in
<
foreign
lang
="
grc
">μ</
foreign
>
, eodem tempore
<
lb
/>
progrederetur uniformiter in recta quæ Parabolam tangit in
<
foreign
lang
="
grc
">μ</
foreign
>
;
<
lb
/>
area quam radio ad punctum
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
ducto deſcriberet, æqualis eſſet
<
lb
/>
areæ Parabolicæ
<
emph
type
="
italics
"/>
ASC
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ. </
foreign
>
</
s
>
<
s
>Ideoque contentum ſub longitudine in
<
lb
/>
tangente deſcripta & longitudine
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
, eſſet ad contentum ſub
<
lb
/>
longitudinibus
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SM,
<
emph.end
type
="
italics
"/>
ut area
<
emph
type
="
italics
"/>
ASC
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
ad triangulum
<
lb
/>
<
emph
type
="
italics
"/>
ASCM,
<
emph.end
type
="
italics
"/>
id eſt, ut
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SM.
<
emph.end
type
="
italics
"/>
Quare
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
eſt ad longitudi
<
lb
/>
nem in tangente deſcriptam, ut
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
ad
<
emph
type
="
italics
"/>
SN.
<
emph.end
type
="
italics
"/>
Cum autem velocitas
<
lb
/>
<
figure
id
="
id.039.01.478.1.jpg
"
xlink:href
="
039/01/478/1.jpg
"
number
="
230
"/>
<
lb
/>
Cometæ in altitudine
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
ſit (per Corol. </
s
>
<
s
>6. Prop. </
s
>
<
s
>XVI. Lib. </
s
>
<
s
>I.)
<
lb
/>
ad velocitatem in altitudine
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
, in ſubduplicata ratione
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
inverſe, id eſt, in ratione
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
ad
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
; longitudo hac velo
<
lb
/>
citate eodem tempore deſcripta, erit ad longitudinem in tangente
<
lb
/>
deſcriptam, ut
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
ad
<
emph
type
="
italics
"/>
SN,
<
emph.end
type
="
italics
"/>
Igitur
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
& longitudo hac nova ve
<
lb
/>
locitate deſcripta, cum ſint ad longitudinem in tangente deſcrip
<
lb
/>
tam in eadem ratione, æquantur inter ſe.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Cometa igitur ea cum velocitate, quam habet in altitudine
<
lb
/>
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
+2/3
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
, eodem tempore deſcriberet chordam
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
quamproxime. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>