Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
481
482
483
484
485
486
487
488
489
490
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/481.jpg
"
pagenum
="
453
"/>
Et per punctum
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
agatur (per hujus Lem. </
s
>
<
s
>VII.) recta
<
emph
type
="
italics
"/>
AEC,
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
note482
"/>
cujus partes
<
emph
type
="
italics
"/>
AE, EC
<
emph.end
type
="
italics
"/>
ad rectas
<
emph
type
="
italics
"/>
TA
<
emph.end
type
="
italics
"/>
&
<
foreign
lang
="
grc
">τ</
foreign
>
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
terminatæ, ſint ad
<
lb
/>
invicem ut tempora V & W: & erunt
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
loca Cometæ in
<
lb
/>
plano Eclipticæ in obſervatione prima ac tertia quamproxime, ſi
<
lb
/>
modo
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
ſit locus ejus recte aſſumptus in obſervatione ſecunda. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note482
"/>
LIBER
<
lb
/>
TERTIUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Ad
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
biſectam in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
erige perpendiculum
<
emph
type
="
italics
"/>
Ii.
<
emph.end
type
="
italics
"/>
Per punctum
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
<
lb
/>
age occultam
<
emph
type
="
italics
"/>
Bi
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
parallelam. </
s
>
<
s
>Junge occultam
<
emph
type
="
italics
"/>
Si
<
emph.end
type
="
italics
"/>
ſecan
<
lb
/>
tem
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
in
<
foreign
lang
="
grc
">λ</
foreign
>
, & comple parallelogrammum
<
emph
type
="
italics
"/>
iI
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">λμ. </
foreign
>
</
s
>
<
s
>Cape
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">σ</
foreign
>
æqua
<
lb
/>
lem 3
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">λ</
foreign
>
, & per Solem
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
age occultam
<
foreign
lang
="
grc
">σξ</
foreign
>
æqualem 3
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">σ</
foreign
>
+3
<
emph
type
="
italics
"/>
i
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">λ</
foreign
>
,
<
lb
/>
Et deletis jam literis
<
emph
type
="
italics
"/>
A, E, C, I,
<
emph.end
type
="
italics
"/>
a puncto
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
verſus punctum
<
foreign
lang
="
grc
">ξ</
foreign
>
<
lb
/>
duc occultam novam
<
emph
type
="
italics
"/>
BE,
<
emph.end
type
="
italics
"/>
quæ ſit ad priorem
<
emph
type
="
italics
"/>
BE
<
emph.end
type
="
italics
"/>
in duplicata
<
lb
/>
ratione diſtantiæ
<
emph
type
="
italics
"/>
BS
<
emph.end
type
="
italics
"/>
ad quantitatem
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
+1/3
<
emph
type
="
italics
"/>
i
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">λ. </
foreign
>
</
s
>
<
s
>Et per punctum
<
lb
/>
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
iterum duc rectam
<
emph
type
="
italics
"/>
AEC
<
emph.end
type
="
italics
"/>
eadem lege ac prius, id eſt, ita ut ejus
<
lb
/>
partes
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
EC
<
emph.end
type
="
italics
"/>
ſint ad invicem, ut tempora inter obſervationes
<
lb
/>
V & W. </
s
>
<
s
>Et erunt
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
loca Cometæ magis accurate. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Ad
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
biſectam in
<
emph
type
="
italics
"/>
1
<
emph.end
type
="
italics
"/>
erigantur perpendicula
<
emph
type
="
italics
"/>
AM, CN, IO,
<
emph.end
type
="
italics
"/>
<
lb
/>
quarum
<
emph
type
="
italics
"/>
AM
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
CN
<
emph.end
type
="
italics
"/>
ſint tangentes latitudinum in obſervatione
<
lb
/>
prima ac tertia ad radios
<
emph
type
="
italics
"/>
TA
<
emph.end
type
="
italics
"/>
&
<
foreign
lang
="
grc
">τ</
foreign
>
<
emph
type
="
italics
"/>
C.
<
emph.end
type
="
italics
"/>
Jungatur
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
ſecans
<
emph
type
="
italics
"/>
IO
<
emph.end
type
="
italics
"/>
<
lb
/>
in
<
emph
type
="
italics
"/>
O.
<
emph.end
type
="
italics
"/>
Conſtituatur rectangulum
<
emph
type
="
italics
"/>
iI
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">λμ</
foreign
>
ut prius. </
s
>
<
s
>In
<
emph
type
="
italics
"/>
IA
<
emph.end
type
="
italics
"/>
pro
<
lb
/>
ducta capiatur
<
emph
type
="
italics
"/>
ID
<
emph.end
type
="
italics
"/>
æqualis
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">μ</
foreign
>
+2/3
<
emph
type
="
italics
"/>
i
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">λ</
foreign
>
, & agatur occulta
<
emph
type
="
italics
"/>
OD.
<
emph.end
type
="
italics
"/>
<
lb
/>
Deinde in
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
verſus
<
emph
type
="
italics
"/>
N
<
emph.end
type
="
italics
"/>
capiatur
<
emph
type
="
italics
"/>
MP,
<
emph.end
type
="
italics
"/>
quæ ſit ad longitudinem
<
lb
/>
ſupra inventam X, in ſubduplicata ratione mediocris diſtantiæ Tel
<
lb
/>
luris a Sole (ſeu ſemidiametri Orbis magni) ad diſtantiam
<
emph
type
="
italics
"/>
OD.
<
emph.end
type
="
italics
"/>
<
lb
/>
Si punctum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
incidat in punctum
<
emph
type
="
italics
"/>
N
<
emph.end
type
="
italics
"/>
; erunt
<
emph
type
="
italics
"/>
A, B, C
<
emph.end
type
="
italics
"/>
tria loca Co
<
lb
/>
metæ, per quæ Orbis ejus in plano Eclipticæ deſcribi debet. </
s
>
<
s
>Sin
<
lb
/>
punctum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
non incidat in punctum
<
emph
type
="
italics
"/>
N
<
emph.end
type
="
italics
"/>
; in recta
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
capiatur
<
lb
/>
<
emph
type
="
italics
"/>
CG
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
NP
<
emph.end
type
="
italics
"/>
æqualis, ita ut puncta
<
emph
type
="
italics
"/>
G
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ad eaſdem partes
<
lb
/>
rectæ
<
emph
type
="
italics
"/>
NC
<
emph.end
type
="
italics
"/>
jaceant. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Eadem methodo qua puncta
<
emph
type
="
italics
"/>
E, A, C, G,
<
emph.end
type
="
italics
"/>
ex aſſumpto puncto
<
lb
/>
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
inventa ſunt, inveniantur ex aſſumptis utcunque punctis aliis
<
lb
/>
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
&
<
foreign
lang
="
grc
">β</
foreign
>
puncta nova
<
emph
type
="
italics
"/>
e, a, c, g,
<
emph.end
type
="
italics
"/>
&
<
foreign
lang
="
grc
">ε, α, χ, γ. </
foreign
>
</
s
>
<
s
>Deinde ſi per
<
emph
type
="
italics
"/>
G, g,
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">γ</
foreign
>
<
lb
/>
ducatur circumferentia circuli
<
emph
type
="
italics
"/>
Gg
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">γ</
foreign
>
, ſecans rectam
<
foreign
lang
="
grc
">τ</
foreign
>
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
Z
<
emph.end
type
="
italics
"/>
: erit
<
lb
/>
<
emph
type
="
italics
"/>
Z
<
emph.end
type
="
italics
"/>
locus Cometæ in plano Eclipticæ. </
s
>
<
s
>Et ſi in
<
emph
type
="
italics
"/>
AC, ac,
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">αχ</
foreign
>
capi
<
lb
/>
antur
<
emph
type
="
italics
"/>
AF, af,
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">αφ</
foreign
>
ipſis
<
emph
type
="
italics
"/>
CG, eg,
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">χγ</
foreign
>
reſpective æquales, & per
<
lb
/>
puncta
<
emph
type
="
italics
"/>
F, f,
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">φ</
foreign
>
ducatur circumferentia circuli
<
emph
type
="
italics
"/>
Ff
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">φ</
foreign
>
, ſecans rectam
<
lb
/>
<
emph
type
="
italics
"/>
AT
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
X;
<
emph.end
type
="
italics
"/>
erit punctum
<
emph
type
="
italics
"/>
X
<
emph.end
type
="
italics
"/>
alius Cometæ locus in plano Eclipticæ. </
s
>
<
s
>
<
lb
/>
Ad puncta
<
emph
type
="
italics
"/>
X
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Z
<
emph.end
type
="
italics
"/>
erigantur tangentes latitudinum Cometæ ad ra
<
lb
/>
dios
<
emph
type
="
italics
"/>
TX
<
emph.end
type
="
italics
"/>
&
<
foreign
lang
="
grc
">τ</
foreign
>
<
emph
type
="
italics
"/>
Z
<
emph.end
type
="
italics
"/>
; & habebuntur loca duo Cometæ in Orbe proprio. </
s
>
<
s
>
<
lb
/>
Denique (per Prop. </
s
>
<
s
>XIX. Lib. </
s
>
<
s
>I.) umbilico
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
per loca illa duo de
<
lb
/>
ſcribatur Parabola, & hæc erit Trajectoria Cometæ.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>