Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
481
(461)
482
(462)
483
(463)
484
(464)
485
(467)
486
(468)
487
(469)
488
(470)
489
(471)
490
(472)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(461)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1076
"
type
="
section
"
level
="
1
"
n
="
645
">
<
p
>
<
s
xml:id
="
echoid-s11782
"
xml:space
="
preserve
">
<
pb
o
="
461
"
file
="
0481
"
n
="
481
"
rhead
="
LIBER VI.
"/>
ſub, YT, & </
s
>
<
s
xml:id
="
echoid-s11783
"
xml:space
="
preserve
">quadrato, TE, cum cubo, TY, vel vt horum ſub tri-
<
lb
/>
pla .</
s
>
<
s
xml:id
="
echoid-s11784
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s11785
"
xml:space
="
preserve
">vt parallelepipedum ſub, ZY, & </
s
>
<
s
xml:id
="
echoid-s11786
"
xml:space
="
preserve
">quadrato, YE, ſub, EY, & </
s
>
<
s
xml:id
="
echoid-s11787
"
xml:space
="
preserve
">
<
lb
/>
quadrato, YZ; </
s
>
<
s
xml:id
="
echoid-s11788
"
xml:space
="
preserve
">.</
s
>
<
s
xml:id
="
echoid-s11789
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s11790
"
xml:space
="
preserve
">ſub, ZY, & </
s
>
<
s
xml:id
="
echoid-s11791
"
xml:space
="
preserve
">rectangulo, ZYE, cum tertia parte
<
lb
/>
cubi, ZY, quæ conficiunt parallelepipedum ſub, ZY, & </
s
>
<
s
xml:id
="
echoid-s11792
"
xml:space
="
preserve
">his iunctis
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0481-01
"
xlink:href
="
note-0481-01a
"
xml:space
="
preserve
">35 l. 2.
<
lb
/>
33. l. 2.</
note
>
ideſt rectangulo, ZYE, quadrato, YE, cum tertia parte quadrati,
<
lb
/>
ZY, ideſt ſub, ZY, & </
s
>
<
s
xml:id
="
echoid-s11793
"
xml:space
="
preserve
">rectangulo, ZEY, cum tertia parte quadrati,
<
lb
/>
ZY, ad parallelepipedum ſub, YT, & </
s
>
<
s
xml:id
="
echoid-s11794
"
xml:space
="
preserve
">quadrato, TE, ſub, ET, & </
s
>
<
s
xml:id
="
echoid-s11795
"
xml:space
="
preserve
">
<
lb
/>
quadrato, TY, cum tertia parte cubi, TY, quæ eſſe æqualia oſtẽ-
<
lb
/>
demus parallelepipedo ſub, YT, & </
s
>
<
s
xml:id
="
echoid-s11796
"
xml:space
="
preserve
">rectangulo YET, cum tertia
<
lb
/>
parte quadrati, YT, igitur trilineum, EQX, ad trilineum, EXI,
<
lb
/>
erit vt parallelepipedum ſub, ZY, & </
s
>
<
s
xml:id
="
echoid-s11797
"
xml:space
="
preserve
">rectangulo, ZEY, cum tertia
<
lb
/>
@arte quadrati, ZY, ad parallelepipedum ſub, YT, ideſt ſub, ZY,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0481-02
"
xlink:href
="
note-0481-02a
"
xml:space
="
preserve
">B. G. Cor.
<
lb
/>
4. gener.
<
lb
/>
34. l. 2.</
note
>
& </
s
>
<
s
xml:id
="
echoid-s11798
"
xml:space
="
preserve
">ſub rectangulo, YET, cum tertia parte quadrati, TY, & </
s
>
<
s
xml:id
="
echoid-s11799
"
xml:space
="
preserve
">quia
<
lb
/>
hæc parallelepipeda ſunt in eadem altitudine, ideo ſunt vt baſes,
<
lb
/>
igitur trilineum, EQX, ad trilineum, EXI, erit vt rectangulum, ZE
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0481-03
"
xlink:href
="
note-0481-03a
"
xml:space
="
preserve
">Blicitur ex
<
lb
/>
9. huius.
<
lb
/>
Elicitur
<
lb
/>
ex 15. hui
<
lb
/>
us.</
note
>
Y, cum tertia parte quadrati, YZ, ad rectangulum, YET, cum ter-
<
lb
/>
tia parte quadrati, YT, eſt autem ſectio, E℟I, æqualis ſpatio, AG
<
lb
/>
H, & </
s
>
<
s
xml:id
="
echoid-s11800
"
xml:space
="
preserve
">trilineum, EXI, ſpatio, HPMH, & </
s
>
<
s
xml:id
="
echoid-s11801
"
xml:space
="
preserve
">trilineum, EQX, ſpatio,
<
lb
/>
MZSBM, ergo ſpatium, AGH, ad ſpatium, HPMH, erit vt ter-
<
lb
/>
tia pars quadrati, TE, ad rectangulum, TEY, cum tertia parte
<
lb
/>
quadrati, TY, ideſt vt tertia pars quadrati, HA, ad rectangulum,
<
lb
/>
HAM, cum tertia parte quadrati, HM. </
s
>
<
s
xml:id
="
echoid-s11802
"
xml:space
="
preserve
">Similiter concludemus
<
lb
/>
ſpatium, HPMH, ad ſpatium, MZSBM, eſſe vt rectangulum, HA
<
lb
/>
M, cum tertia parte quadrati, HM, ad rectangulum, MAB, cum
<
lb
/>
tertia parte quadrati, MB, quod oſtendere opus erat.</
s
>
<
s
xml:id
="
echoid-s11803
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1078
"
type
="
section
"
level
="
1
"
n
="
646
">
<
head
xml:id
="
echoid-head676
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11804
"
xml:space
="
preserve
">_H_Inc patet ſi ducatur quædam tangens parabolam, quæ in partes
<
lb
/>
quotcunq; </
s
>
<
s
xml:id
="
echoid-s11805
"
xml:space
="
preserve
">æquales diuidatur, & </
s
>
<
s
xml:id
="
echoid-s11806
"
xml:space
="
preserve
">per puncta diuiſionum du-
<
lb
/>
cantur recta linea diametro parallelæ, quouſq; </
s
>
<
s
xml:id
="
echoid-s11807
"
xml:space
="
preserve
">incidant in curuam
<
lb
/>
parabolæ, his incidentiæ punctis cum contactus puncto iunctis, ſpa-
<
lb
/>
tium ſub prima iungente, & </
s
>
<
s
xml:id
="
echoid-s11808
"
xml:space
="
preserve
">ſubtenſa curua parabola ad trilineum
<
lb
/>
ſub prima, & </
s
>
<
s
xml:id
="
echoid-s11809
"
xml:space
="
preserve
">ſecunda iungente, & </
s
>
<
s
xml:id
="
echoid-s11810
"
xml:space
="
preserve
">ab illis appræhenſa curua, eſſe vt
<
lb
/>
tertia pars quadrati primæ partis tangentis eſt ad rectangulum ſub
<
lb
/>
prima parte, & </
s
>
<
s
xml:id
="
echoid-s11811
"
xml:space
="
preserve
">compoſito ex prima, & </
s
>
<
s
xml:id
="
echoid-s11812
"
xml:space
="
preserve
">ſecunda cum tertia parte qua-
<
lb
/>
dratis ſecundæ. </
s
>
<
s
xml:id
="
echoid-s11813
"
xml:space
="
preserve
">Similiter hoc trilineum ad trilineum ſub ſecunda,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s11814
"
xml:space
="
preserve
">tertia iungente, & </
s
>
<
s
xml:id
="
echoid-s11815
"
xml:space
="
preserve
">ab illis appræhenſa curua parabolæ, eſſe vt re-
<
lb
/>
ctangulum ſub prima, & </
s
>
<
s
xml:id
="
echoid-s11816
"
xml:space
="
preserve
">ſub compoſito ex prima, & </
s
>
<
s
xml:id
="
echoid-s11817
"
xml:space
="
preserve
">ſecunda parte
<
lb
/>
tangentis (enumeratione ſemper à puncto contactus incepta) vna cum
<
lb
/>
tertia parte quadrati ſecunda ad rectangulum ſub compoſita ex </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>