Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
481
481
482
482
483
483
484
484
485
485
486
486
487
487
488
488
489
489
490
490
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/482.jpg" pagenum="454"/>
                    <arrow.to.target n="note483"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note483"/>
                  DE MUNDI
                    <lb/>
                  SYSTEMATE</s>
                </p>
                <p type="main">
                  <s>Conſtructionis hujus demonſtratio ex Lemmatibus conſequitur:
                    <lb/>
                  quippe cum recta
                    <emph type="italics"/>
                  AC
                    <emph.end type="italics"/>
                  ſecetur in
                    <emph type="italics"/>
                  E
                    <emph.end type="italics"/>
                  in ratione temporum, per
                    <lb/>
                  Lemma VII, ut oportet per Lem. </s>
                  <s>VIII: &
                    <emph type="italics"/>
                  BE
                    <emph.end type="italics"/>
                  per Lem. </s>
                  <s>XI.
                    <lb/>
                  ſit pars rectæ
                    <emph type="italics"/>
                  BS
                    <emph.end type="italics"/>
                  vel
                    <emph type="italics"/>
                  B
                    <emph.end type="italics"/>
                    <foreign lang="grc">ξ</foreign>
                  in plano Eclipticæ arcui
                    <emph type="italics"/>
                  ABC
                    <emph.end type="italics"/>
                  &
                    <lb/>
                  chordæ
                    <emph type="italics"/>
                  AEC
                    <emph.end type="italics"/>
                  interjecta; &
                    <emph type="italics"/>
                  MP
                    <emph.end type="italics"/>
                  (per Corol. </s>
                  <s>Lem. </s>
                  <s>X.) longi­
                    <lb/>
                  tudo ſit chordæ arcus, quem Cometa in Orbe proprio inter ob­
                    <lb/>
                  ſervationem primam ac tertiam deſcribere debet, ideoQ.E.I.ſi
                    <lb/>
                    <emph type="italics"/>
                  MN
                    <emph.end type="italics"/>
                  æqualis fuerit, ſi modo
                    <emph type="italics"/>
                  B
                    <emph.end type="italics"/>
                  ſit verus Cometæ locus in plano
                    <lb/>
                  Eclipticæ. </s>
                </p>
                <figure id="id.039.01.482.1.jpg" xlink:href="039/01/482/1.jpg" number="232"/>
                <p type="main">
                  <s>Cæterum puncta
                    <emph type="italics"/>
                  B, b,
                    <emph.end type="italics"/>
                    <foreign lang="grc">β</foreign>
                  non quælibet, ſed vero proxima eli­
                    <lb/>
                  gere convenit. </s>
                  <s>Si angulus
                    <emph type="italics"/>
                  AQt,
                    <emph.end type="italics"/>
                  in quo veſtigium Orbis in
                    <lb/>
                  plano Eclipticæ deſcriptum ſecat rectam
                    <emph type="italics"/>
                  tB,
                    <emph.end type="italics"/>
                  præterpropter in­
                    <lb/>
                  noteſcat; in angulo illo ducenda erit recta occulta
                    <emph type="italics"/>
                  AC,
                    <emph.end type="italics"/>
                  quæ ſit
                    <lb/>
                  ad 4/3
                    <emph type="italics"/>
                  T
                    <emph.end type="italics"/>
                    <foreign lang="grc">τ</foreign>
                  in ſubduplicata ratione
                    <emph type="italics"/>
                  SQ
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  St.
                    <emph.end type="italics"/>
                  Et agendo rectam
                    <lb/>
                    <emph type="italics"/>
                  SEB
                    <emph.end type="italics"/>
                  cujus pars
                    <emph type="italics"/>
                  EB
                    <emph.end type="italics"/>
                  æquetur longitudini
                    <emph type="italics"/>
                  Vt,
                    <emph.end type="italics"/>
                  determinabitur
                    <lb/>
                  punctum
                    <emph type="italics"/>
                  B
                    <emph.end type="italics"/>
                  quod prima vice uſurpare licet. </s>
                  <s>Tum recta
                    <emph type="italics"/>
                  AC
                    <emph.end type="italics"/>
                  de­
                    <lb/>
                  leta & ſecundum præcedentem conſtructionem iterum ducta, & </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>