Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
481
482
483
484
485
486
487
488
489
490
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/482.jpg
"
pagenum
="
454
"/>
<
arrow.to.target
n
="
note483
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note483
"/>
DE MUNDI
<
lb
/>
SYSTEMATE</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Conſtructionis hujus demonſtratio ex Lemmatibus conſequitur:
<
lb
/>
quippe cum recta
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
ſecetur in
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
in ratione temporum, per
<
lb
/>
Lemma VII, ut oportet per Lem. </
s
>
<
s
>VIII: &
<
emph
type
="
italics
"/>
BE
<
emph.end
type
="
italics
"/>
per Lem. </
s
>
<
s
>XI.
<
lb
/>
ſit pars rectæ
<
emph
type
="
italics
"/>
BS
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">ξ</
foreign
>
in plano Eclipticæ arcui
<
emph
type
="
italics
"/>
ABC
<
emph.end
type
="
italics
"/>
&
<
lb
/>
chordæ
<
emph
type
="
italics
"/>
AEC
<
emph.end
type
="
italics
"/>
interjecta; &
<
emph
type
="
italics
"/>
MP
<
emph.end
type
="
italics
"/>
(per Corol. </
s
>
<
s
>Lem. </
s
>
<
s
>X.) longi
<
lb
/>
tudo ſit chordæ arcus, quem Cometa in Orbe proprio inter ob
<
lb
/>
ſervationem primam ac tertiam deſcribere debet, ideoQ.E.I.ſi
<
lb
/>
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
æqualis fuerit, ſi modo
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
ſit verus Cometæ locus in plano
<
lb
/>
Eclipticæ. </
s
>
</
p
>
<
figure
id
="
id.039.01.482.1.jpg
"
xlink:href
="
039/01/482/1.jpg
"
number
="
232
"/>
<
p
type
="
main
">
<
s
>Cæterum puncta
<
emph
type
="
italics
"/>
B, b,
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">β</
foreign
>
non quælibet, ſed vero proxima eli
<
lb
/>
gere convenit. </
s
>
<
s
>Si angulus
<
emph
type
="
italics
"/>
AQt,
<
emph.end
type
="
italics
"/>
in quo veſtigium Orbis in
<
lb
/>
plano Eclipticæ deſcriptum ſecat rectam
<
emph
type
="
italics
"/>
tB,
<
emph.end
type
="
italics
"/>
præterpropter in
<
lb
/>
noteſcat; in angulo illo ducenda erit recta occulta
<
emph
type
="
italics
"/>
AC,
<
emph.end
type
="
italics
"/>
quæ ſit
<
lb
/>
ad 4/3
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
<
foreign
lang
="
grc
">τ</
foreign
>
in ſubduplicata ratione
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
St.
<
emph.end
type
="
italics
"/>
Et agendo rectam
<
lb
/>
<
emph
type
="
italics
"/>
SEB
<
emph.end
type
="
italics
"/>
cujus pars
<
emph
type
="
italics
"/>
EB
<
emph.end
type
="
italics
"/>
æquetur longitudini
<
emph
type
="
italics
"/>
Vt,
<
emph.end
type
="
italics
"/>
determinabitur
<
lb
/>
punctum
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
quod prima vice uſurpare licet. </
s
>
<
s
>Tum recta
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
de
<
lb
/>
leta & ſecundum præcedentem conſtructionem iterum ducta, & </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>