Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
481
(461)
482
(462)
483
(463)
484
(464)
485
(467)
486
(468)
487
(469)
488
(470)
489
(471)
490
(472)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(464)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1081
"
type
="
section
"
level
="
1
"
n
="
648
">
<
pb
o
="
464
"
file
="
0484
"
n
="
484
"
rhead
="
GEOMETRIÆ
"/>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11915
"
xml:space
="
preserve
">rorum. </
s
>
<
s
xml:id
="
echoid-s11916
"
xml:space
="
preserve
">Si autem primum ſpatium ſubtrahatur à ſecundo, ſecundum
<
lb
/>
à tertio, tertium à quarto, & </
s
>
<
s
xml:id
="
echoid-s11917
"
xml:space
="
preserve
">ſic deinceps, habebimus hanc numero-
<
lb
/>
rum ſecundum ſerieum indic antem rationem primi ſpatij ad faſciam ſe-
<
lb
/>
quentem, & </
s
>
<
s
xml:id
="
echoid-s11918
"
xml:space
="
preserve
">huius ad faſciam ſequentem, & </
s
>
<
s
xml:id
="
echoid-s11919
"
xml:space
="
preserve
">ſic deinceps, in qua pa-
<
lb
/>
tet primum ſpatium eſſe _{1/6}_. </
s
>
<
s
xml:id
="
echoid-s11920
"
xml:space
="
preserve
">faſcia ſequentis, ſecundam verò faſciam
<
lb
/>
prima eſſe duplam, tertiam eiuſdem triplam, quartam quadruplam, & </
s
>
<
s
xml:id
="
echoid-s11921
"
xml:space
="
preserve
">
<
lb
/>
ſic deinceps, ſec undum numenorum continuum incrementum, qua in-
<
lb
/>
uentis ab Archimede eſſe conformia eiuſdem de ſpiralibus librum
<
lb
/>
perlegenti compertum fiet.</
s
>
<
s
xml:id
="
echoid-s11922
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
329
">
<
image
file
="
0484-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0484-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div1083
"
type
="
section
"
level
="
1
"
n
="
649
">
<
head
xml:id
="
echoid-head679
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s11923
"
xml:space
="
preserve
">_H_Aec libuit apponere, tum quia adhibita methodus ab Archime-
<
lb
/>
dea diuerſa eſt, tum etiam, vt admirabilem connexionem, &</
s
>
<
s
xml:id
="
echoid-s11924
"
xml:space
="
preserve
">,
<
lb
/>
vt ita dicam parabolici, ac helici ſpatij, affinitatem, talia ſpeculanti,
<
lb
/>
puto, non aſpernendam, ob oculos ponerem; </
s
>
<
s
xml:id
="
echoid-s11925
"
xml:space
="
preserve
">quibus, & </
s
>
<
s
xml:id
="
echoid-s11926
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>