Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
481
(461)
482
(462)
483
(463)
484
(464)
485
(467)
486
(468)
487
(469)
488
(470)
489
(471)
490
(472)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(471)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1096
"
type
="
section
"
level
="
1
"
n
="
657
">
<
p
>
<
s
xml:id
="
echoid-s12025
"
xml:space
="
preserve
">
<
pb
o
="
471
"
file
="
0489
"
n
="
489
"
rhead
="
LIBER VI.
"/>
<
figure
xlink:label
="
fig-0489-01
"
xlink:href
="
fig-0489-01a
"
number
="
331
">
<
image
file
="
0489-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0489-01
"/>
</
figure
>
ſic cylindrus, BF, ad ſolidum, DAF,
<
lb
/>
vnde cylindrus, GF, erit æqualis ſo-
<
lb
/>
lido, DAF. </
s
>
<
s
xml:id
="
echoid-s12026
"
xml:space
="
preserve
">Rurſus triplicetur alti-
<
lb
/>
tudo, EI, & </
s
>
<
s
xml:id
="
echoid-s12027
"
xml:space
="
preserve
">fiat conus eiuſdem al-
<
lb
/>
titudinis in baſi, DF, hic igitur co-
<
lb
/>
nus erit æqualis cylindro, GF, & </
s
>
<
s
xml:id
="
echoid-s12028
"
xml:space
="
preserve
">
<
lb
/>
ſubinde ſolido, DAF, quod inueni-
<
lb
/>
re opus erat.</
s
>
<
s
xml:id
="
echoid-s12029
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1098
"
type
="
section
"
level
="
1
"
n
="
658
">
<
head
xml:id
="
echoid-head688
"
xml:space
="
preserve
">COROLLARIVM I.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s12030
"
xml:space
="
preserve
">_H_Inc patet nos etiam poſſe inuenire cylindrum, & </
s
>
<
s
xml:id
="
echoid-s12031
"
xml:space
="
preserve
">conum, nedũ
<
lb
/>
æqualem dicto ſolido, ſed qui ad ipſum babeat datam rationem,
<
lb
/>
ſi enim altitudo inuenti cylindri, vel coni æqualis dicto ſolido, fiat
<
lb
/>
id ali am altitudinem in data ratione, tamen conuerſa, & </
s
>
<
s
xml:id
="
echoid-s12032
"
xml:space
="
preserve
">harum al-
<
lb
/>
tatudinum vltimò inuentarum in eiſdem baſibus cum prædictis fiant
<
lb
/>
cylindrus, & </
s
>
<
s
xml:id
="
echoid-s12033
"
xml:space
="
preserve
">conus, habebunt iſti ad dictum ſolidum datam ratio-
<
lb
/>
nem, vt facilè apparet.</
s
>
<
s
xml:id
="
echoid-s12034
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1099
"
type
="
section
"
level
="
1
"
n
="
659
">
<
head
xml:id
="
echoid-head689
"
xml:space
="
preserve
">COROLL. II. SECTIO I.</
head
>
<
note
position
="
right
"
xml:space
="
preserve
">A</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s12035
"
xml:space
="
preserve
">_H_Inc etiam patet cylindrum in baſi apicis ſphæralis, vel ſphæ-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0489-02
"
xlink:href
="
note-0489-02a
"
xml:space
="
preserve
">_Coro. 21._
<
lb
/>
_34. l. 3._</
note
>
roidalis, conſtitutum cuius altitudo ad altitudinem eiuſdem
<
lb
/>
apicis ſit, vt, _2._ </
s
>
<
s
xml:id
="
echoid-s12036
"
xml:space
="
preserve
">ad _21._ </
s
>
<
s
xml:id
="
echoid-s12037
"
xml:space
="
preserve
">eſſe æqualem eidem apici.</
s
>
<
s
xml:id
="
echoid-s12038
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1101
"
type
="
section
"
level
="
1
"
n
="
660
">
<
head
xml:id
="
echoid-head690
"
xml:space
="
preserve
">SECTIO II.</
head
>
<
note
position
="
right
"
xml:space
="
preserve
">B</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s12039
"
xml:space
="
preserve
">_V_Lterius habetur quoq; </
s
>
<
s
xml:id
="
echoid-s12040
"
xml:space
="
preserve
">cylindrum, ad cuius altitudinem altitu-
<
lb
/>
do tympani ſphæralis, vel ſphæroidalis ſit, vt ſemidiameter
<
lb
/>
baſis tympani ad reliquum, dempta ab eadem recta linea, ad quam di-
<
lb
/>
midia ſecundæ diametri circuli, vel ellipſis ſit, vt circulus ad qua-
<
lb
/>
dratum, cui circumſcribitur ſimul cum exceſſu, quo dicta linea exce-
<
lb
/>
dit _{2/3}_. </
s
>
<
s
xml:id
="
echoid-s12041
"
xml:space
="
preserve
">tertiæ proportionalis ſemidiametri baſis tympani, & </
s
>
<
s
xml:id
="
echoid-s12042
"
xml:space
="
preserve
">dimidiæ
<
lb
/>
ſecundæ diametri dicti circuli, vel ellipſis, eſſe æqualem dato tym-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0489-04
"
xlink:href
="
note-0489-04a
"
xml:space
="
preserve
">Corò. 12
<
lb
/>
34. l. 3.</
note
>
pano ſphærali, vel ſphæroidali, ſi ſit in baſi eiuſdcm tympani.</
s
>
<
s
xml:id
="
echoid-s12043
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1103
"
type
="
section
"
level
="
1
"
n
="
661
">
<
head
xml:id
="
echoid-head691
"
xml:space
="
preserve
">SECTIO III.</
head
>
<
note
position
="
right
"
xml:space
="
preserve
">C</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s12044
"
xml:space
="
preserve
">_E_T cylindrum, ad cuius altitudinem, altitudo anuli ſtricti circu-
<
lb
/>
laris, vel elliptici, ſit vt quadratum ad circulum, cui circum-
<
lb
/>
ſcribitur, in baſi exiſtentem circulo, cuius radius ſit æqualis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>