Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
491
(473)
492
(474)
493
(473)
494
(474)
495
(475)
496
(476)
497
(477)
498
(478)
499
(479)
500
(480)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(474)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1110
"
type
="
section
"
level
="
1
"
n
="
664
">
<
pb
o
="
474
"
file
="
0492
"
n
="
492
"
rhead
="
GEOMETRIÆ
"/>
<
p
>
<
s
xml:id
="
echoid-s12094
"
xml:space
="
preserve
">Vtamur antecedentis figura, in qua ſupponamus dato cylin-
<
lb
/>
dro, A, conſticuendum eſſe æqualem apicem ſphæralem, vel ſphę-
<
lb
/>
roidalem, & </
s
>
<
s
xml:id
="
echoid-s12095
"
xml:space
="
preserve
">hunc circa datum axem. </
s
>
<
s
xml:id
="
echoid-s12096
"
xml:space
="
preserve
">Exponatur autem cylin-
<
lb
/>
drus, FCD, qui ad cylindrum, A, ſit, vt 21. </
s
>
<
s
xml:id
="
echoid-s12097
"
xml:space
="
preserve
">ad 1. </
s
>
<
s
xml:id
="
echoid-s12098
"
xml:space
="
preserve
">deinde inter, C
<
lb
/>
D, FE, ſumantur duæ inediæ continuè proportionales, GH, M, & </
s
>
<
s
xml:id
="
echoid-s12099
"
xml:space
="
preserve
">
<
lb
/>
fiat cylindrus altitudinis, GH, qui ſit, GLH, ac ſupponatur ipſi,
<
lb
/>
LK, aſſumptam eſſe æqualem ipſam, NO, igitur ductis tangenti-
<
lb
/>
bus circulum circa, NO, in punctis, O, R, N, quæ ſint, OZ, Z℟,
<
lb
/>
℟N, concurrentibus in Z, ℟, patet, OZ, eſſe æqualem ipſi, GK,
<
lb
/>
&</
s
>
<
s
xml:id
="
echoid-s12100
"
xml:space
="
preserve
">, ℟Z, æquatur ipſi, Lk, crgo cylindrus, qui naſceretur ex reuò-
<
lb
/>
lutione parallelogrammi, NZ, circa manentem axem, ℟Z, eſſet
<
lb
/>
æqualis cylindro, GLH, oſtendemus autem, vt in antecedenti cy-
<
lb
/>
lindrum, GLH, eſſe æqualem cylindro, CFD, vnde patebit cylin-
<
lb
/>
drum genitum ex, NZ, ad cylindrum, A, eſſe vt 21. </
s
>
<
s
xml:id
="
echoid-s12101
"
xml:space
="
preserve
">ad 1. </
s
>
<
s
xml:id
="
echoid-s12102
"
xml:space
="
preserve
">ſedidem
<
lb
/>
ad apicem, qui naſceretur ex reuolutione trilinei, OZR, circa, RZ,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0492-01
"
xlink:href
="
note-0492-01a
"
xml:space
="
preserve
">Corol. 11.
<
lb
/>
34. l. 3.</
note
>
eſt vt 21. </
s
>
<
s
xml:id
="
echoid-s12103
"
xml:space
="
preserve
">ad 1. </
s
>
<
s
xml:id
="
echoid-s12104
"
xml:space
="
preserve
">nam cylindrus ex, NZ, duplus eſt cylindriex, BZ,
<
lb
/>
ergo apex genitus ex trilineo, OZR, æqualis erit cylindro, A.</
s
>
<
s
xml:id
="
echoid-s12105
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s12106
"
xml:space
="
preserve
">Sit nunc inueniendus apex ſphæroidalis circa datum axem, RZ,
<
lb
/>
vel illi æqualem, qui ſit æqualis cylindro, A, ſi ergo talis eſſet apex
<
lb
/>
ſphæralis, qui fit ex, OZR, non eſſet alius apex ſphæroidalis circa,
<
lb
/>
RZ, vel illi æqualem, qui eſſet æqualis cylindro, A; </
s
>
<
s
xml:id
="
echoid-s12107
"
xml:space
="
preserve
">ſi verò non
<
lb
/>
ſit, inueniatur apex ſphæralis, vt, ΤΔ4, æqualis cylindro, A, dein-
<
lb
/>
de vt, RZ, ad huius facti apicis axim, 4Δ, ita fiat dimidij diametri
<
lb
/>
baſis eiuſdem, ideſt, ΤΔ, quadratum ad quadratum, OY, ſiue, BI,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s12108
"
xml:space
="
preserve
">per, 1, tranſeat elliplis, NIO, & </
s
>
<
s
xml:id
="
echoid-s12109
"
xml:space
="
preserve
">ducatur eandem tangens in, I,
<
lb
/>
quę fit, IY, igitur quia, RZ, ad, 4Δ, axim facti apicis ſphæralis eſt,
<
lb
/>
vt quadratum, ΤΔ, dimidij diametri baſis, ad quadratum, OY,
<
lb
/>
ideſt, vt circulus, qui eſt baſis facti apicis ſphæralis, ΤΔ4, ad cir-
<
lb
/>
culum, qui eſt baſis alterius, ideò iſti apices erunt æquales: </
s
>
<
s
xml:id
="
echoid-s12110
"
xml:space
="
preserve
">nam
<
lb
/>
ſe habebunt, vt cylindri in eiſdem cum illis baſibus, & </
s
>
<
s
xml:id
="
echoid-s12111
"
xml:space
="
preserve
">circa eoſ-
<
lb
/>
dem axes exiſtentes, qui cylindrici erunt æquales, nam axes baſi-
<
lb
/>
bus reciprocè reſpondet; </
s
>
<
s
xml:id
="
echoid-s12112
"
xml:space
="
preserve
">ergo apex ſuphæroidalis, qui fiet ex, O
<
lb
/>
YI, & </
s
>
<
s
xml:id
="
echoid-s12113
"
xml:space
="
preserve
">eſt circa axim, IY, æqualem ipſi, RZ, datæ, erit æqualis cy-
<
lb
/>
lindro, A, quæ inuenienda erant.</
s
>
<
s
xml:id
="
echoid-s12114
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1112
"
type
="
section
"
level
="
1
"
n
="
665
">
<
head
xml:id
="
echoid-head695
"
xml:space
="
preserve
">COR OLL ARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s12115
"
xml:space
="
preserve
">_P_Atet autem, quod iuxta Corollarium antec@dentis poterimus etiã
<
lb
/>
inuenire apices ſphęrales, vel ſphæroidales circa datum axim, ad
<
lb
/>
datum quodcunq; </
s
>
<
s
xml:id
="
echoid-s12116
"
xml:space
="
preserve
">ſolidum ex enumeratis in dicto Corollario datam
<
lb
/>
ratoinem habentes.</
s
>
<
s
xml:id
="
echoid-s12117
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>