Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

List of thumbnails

< >
501
501 (481)
502
502 (482)
503
503 (483)
504
504 (484)
505
505 (485)
506
506 (486)
507
507 (487)
508
508 (488)
509
509 (489)
510
510 (490)
< >
page |< < (486) of 569 > >|
506486GEOMETRIÆ339[Figure 339] ſit in parallelis, E6, Y4, etiam reſidua figura, vel reſiduarum ag-
gregatum
, ipſius, CβΛ, (quod ſit ipſi fruſta, ΙΓΛ, 785,) erit in eiſdẽ
parallelis
;
E6, Y4, ſi enim non pertingeret hinc inde ad parallelas,
E6
, Y4, vt ex.
g. ſi pertingeret quidem vſq; ad, E6, non tamen vſq;
ad, Y4, ſed tantum vſque ad, , conceptis rectis lineis in fruſto,
Q℟β59R
, ipſi, AD, parallelis non reſponderent in reſiduo figuræ,
CβΛ
, ſeu ex reſiduis aggregato, aliæ rectæ lineæ, vt ſuperius neceſ-
ſe
eſſe probatum eſt, ſunt ergo hæc reſidua, vel reſiduorum aggre-
gata
in eiſdem parallelis, &
in illis conceptæ parallelarum ipſis, A
D
, Y4, portiones inter ſe ſunt æquales, vt ſupra oſtendimus, ergo
reſidua
, ſeu reſiduorum aggregata, ſunt eius conditionis, cuius ip-
ſas
, BZ&
, CβΛ, figuras iam eſſe ſuppoſitum fuit, ideſt æqualiter
analoga
.
Fiat ergo denuo reſiduorum ſuperpoſitio, ita tamen vt
parallelæ
, GH, &
β, ſuper parallelas, HK, β4, ſint conſtitutæ, &
congruat
pars, VΔΛ, fruſti, H℟597, parti, VΔΛ, fruſti, ΙΓΛ, oſten-
demus
ergo vt ſupra, dum vnius habetur reſiduum haberi etiam al-
terius
, &
hæc reſidua, ſiue reſiduorum aggregata, eſſe in eiſdem
parallelis
, ſit autem ad figuram, BZ&
, ſpectans reſiduum, ΚVΛ3
ΠΧ
, ad figuram autem, CβΛ, ſint pertinentia reſidua, ΙΓΔV, 785,
quorum
aggregatum eſt in eiſdem parallelis cum reſiduo, ΚVΛ3
ΠΧ
, nem in parallelis, E6, Y4, ſi ergo horum reſiduorum fiat
denuò
ſuperpoſitio, ita tamen vt parallelæ, in quibus exiſtunt, ſint
ſemper
ad inuicem ſuperpoſitę, &
hoc ſemper fieri intelligatur, do-
nec
tota figura, BZ&
, fuerit ſuperpoſita, dico totam debere ipſi,
CβΛ
, congruere, alioquin ſi eſſet aliquod reſiduum vt figurę, CβΛ,
cui
nihil eſſet ſuperpoſitum, eſſet etiam aliquod reſiduum

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index