Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
501
(481)
502
(482)
503
(483)
504
(484)
505
(485)
506
(486)
507
(487)
508
(488)
509
(489)
510
(490)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(487)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1136
"
type
="
section
"
level
="
1
"
n
="
681
">
<
p
>
<
s
xml:id
="
echoid-s12455
"
xml:space
="
preserve
">
<
pb
o
="
487
"
file
="
0507
"
n
="
507
"
rhead
="
LIBER VII.
"/>
BZ&</
s
>
<
s
xml:id
="
echoid-s12456
"
xml:space
="
preserve
">, quod non eſſet ſuperpoſitum, vt ſupra oſtendimus neceſſe
<
lb
/>
eſſe, ponitur autem totam, BZ&</
s
>
<
s
xml:id
="
echoid-s12457
"
xml:space
="
preserve
">, eſſe ſuperpoſitam ipſi, CβΛ, er-
<
lb
/>
go ita ſunt ad inuicem ſuperpoſitę, vt neutrius reſidua habeantur,
<
lb
/>
ergo ita ſunt ſuperpoſitę, vt ſibi congruant, ergo figuræ, BZ&</
s
>
<
s
xml:id
="
echoid-s12458
"
xml:space
="
preserve
">, C
<
lb
/>
βΛ, inter ſe ſunt æquales.</
s
>
<
s
xml:id
="
echoid-s12459
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s12460
"
xml:space
="
preserve
">Sint nunc in eodem ſchemate duæ figuræ ſolidæ quæeunque,
<
lb
/>
BZ&</
s
>
<
s
xml:id
="
echoid-s12461
"
xml:space
="
preserve
">, CβΛ, in eiſdem planis parallelis, AD, Y4, conſſitutæ, ductis
<
lb
/>
autem quibuſcunq; </
s
>
<
s
xml:id
="
echoid-s12462
"
xml:space
="
preserve
">planis, E6, LΣ, præfatis æquidiſtantibus, ſint
<
lb
/>
conceptæ in ſolidis figuræ, quæ iacent in eodem plano, ſemper in-
<
lb
/>
ter ſe æquales, vt, FG, æqualis, HI, &</
s
>
<
s
xml:id
="
echoid-s12463
"
xml:space
="
preserve
">, MN, OP, ſimul ſumptæ
<
lb
/>
(ſit enim ſolida figura ex. </
s
>
<
s
xml:id
="
echoid-s12464
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s12465
"
xml:space
="
preserve
">BZ&</
s
>
<
s
xml:id
="
echoid-s12466
"
xml:space
="
preserve
">, intus vtcunq; </
s
>
<
s
xml:id
="
echoid-s12467
"
xml:space
="
preserve
">caua ſecundum
<
lb
/>
ſuperficiem, {12/ }, N, {13/ }, O,) æquales ipſi, SV. </
s
>
<
s
xml:id
="
echoid-s12468
"
xml:space
="
preserve
">Dico eaſdem ſolidas
<
lb
/>
figuras æquales eſſe. </
s
>
<
s
xml:id
="
echoid-s12469
"
xml:space
="
preserve
">Si enim ſolidum, BZ&</
s
>
<
s
xml:id
="
echoid-s12470
"
xml:space
="
preserve
">, cum portionibus,
<
lb
/>
ABY, & </
s
>
<
s
xml:id
="
echoid-s12471
"
xml:space
="
preserve
">planorũ, AD, Y4, ipſi conterminantibus, ſolido, CβΛ, ita
<
lb
/>
ſuperpoſuerimus, vt planum, AB, ſit in plano, AD, &</
s
>
<
s
xml:id
="
echoid-s12472
"
xml:space
="
preserve
">, Y&</
s
>
<
s
xml:id
="
echoid-s12473
"
xml:space
="
preserve
">, in pla-
<
lb
/>
no, Y4, oſtendemus (vt fecimus ſuperius circa parallelarum ipſi, A
<
lb
/>
D, conceptas in figuris planis, BZ&</
s
>
<
s
xml:id
="
echoid-s12474
"
xml:space
="
preserve
">, CβΛ, portiones) figuras in
<
lb
/>
ſolidis, BZ&</
s
>
<
s
xml:id
="
echoid-s12475
"
xml:space
="
preserve
">, CβΛ, conceptas, quæ erant in eodem plano, etiam
<
lb
/>
poſt ſuperpoſitionem manere in eode plano, & </
s
>
<
s
xml:id
="
echoid-s12476
"
xml:space
="
preserve
">ideò adhuc ęqua-
<
lb
/>
les eſſe figuras in ſuperpoſitis ſolidis conceptas, & </
s
>
<
s
xml:id
="
echoid-s12477
"
xml:space
="
preserve
">ipſis, AD, Y4,
<
lb
/>
parallelas. </
s
>
<
s
xml:id
="
echoid-s12478
"
xml:space
="
preserve
">Niſi ergo totum ſolidum toti congruat in prima ſu-
<
lb
/>
perpoſitione, relinquentur reſidua ſolida, vel ex reſiduis compoſi-
<
lb
/>
ta in vtroq; </
s
>
<
s
xml:id
="
echoid-s12479
"
xml:space
="
preserve
">ſolido, quæ non erunt ad inuicem ſuperpoſita, cum
<
lb
/>
enim ex. </
s
>
<
s
xml:id
="
echoid-s12480
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s12481
"
xml:space
="
preserve
">figuræ, QR, ST, æquentur figuræ, SV, dempta com-
<
lb
/>
muni figura, ST, reliqua, QR, æquabitur reliquæ, TV, hocq; </
s
>
<
s
xml:id
="
echoid-s12482
"
xml:space
="
preserve
">cõ-
<
lb
/>
tinget in quouis alio plano ipſi, AD, parallelo occurrenteſolidis,
<
lb
/>
C℟Γ, CβΛ, ergo ſemper habentes reſiduum vnius ſolidi, habebimus
<
lb
/>
etiam reſiduum alterius, & </
s
>
<
s
xml:id
="
echoid-s12483
"
xml:space
="
preserve
">patebit, iuxta methodum adhibitam in
<
lb
/>
priori parte huius Propoſitionis circa figuras planas, reſidua ſoli-
<
lb
/>
da, vel reſiduorum aggregata ſemper eſſe in eiſdem parallelis pla-
<
lb
/>
nis, vt reſidua, H℟597, ΙΓΛ, 785, eſſe in planis parallelis, E6, Y4,
<
lb
/>
ac æqualiter analoga: </
s
>
<
s
xml:id
="
echoid-s12484
"
xml:space
="
preserve
">ſi ergo hæc reſidua adhuc ſuperponantur,
<
lb
/>
ita vt planum, EH, locetur in plano, H6, &</
s
>
<
s
xml:id
="
echoid-s12485
"
xml:space
="
preserve
">, Υβ, in, β4, & </
s
>
<
s
xml:id
="
echoid-s12486
"
xml:space
="
preserve
">hoc
<
lb
/>
ſempei fieri intelligatur, donec quod ſuperponitur, vt, BZ&</
s
>
<
s
xml:id
="
echoid-s12487
"
xml:space
="
preserve
">, totũ
<
lb
/>
fuerit aſſumptum, tandem ipſum totum, BZ&</
s
>
<
s
xml:id
="
echoid-s12488
"
xml:space
="
preserve
">, congruet toti, Cβ
<
lb
/>
Λ, niſi enim toto ſolido, BZ&</
s
>
<
s
xml:id
="
echoid-s12489
"
xml:space
="
preserve
">, ipſi, CβΛ, ſuperpoſito, @pſa ſibi cõ-
<
lb
/>
gruerent, eſſet aliquod reſiduum vnius, vt ſolidi, CβΛ, ergo etiam
<
lb
/>
eſſet aliquod reſiduum ſolidi, C℟Γ, ſeu, BZ&</
s
>
<
s
xml:id
="
echoid-s12490
"
xml:space
="
preserve
">, illudq; </
s
>
<
s
xml:id
="
echoid-s12491
"
xml:space
="
preserve
">non eſſet ſu-
<
lb
/>
perpoſitum, quod eſt abſurdum, ponitur enim iam totum ſolidũ,
<
lb
/>
BZ&</
s
>
<
s
xml:id
="
echoid-s12492
"
xml:space
="
preserve
">, eſſe ipſi, CβΛ, ſuperpoſitum, non ergo erit aliquod reſiduũ
<
lb
/>
in ipſisſolidis, ergo ſibi congruent, ergo dictæ figuræ ſolidæ, BZ&</
s
>
<
s
xml:id
="
echoid-s12493
"
xml:space
="
preserve
">,
<
lb
/>
CβΛ, inter ſe æquales erunt, quæ fuerunt demonſtranda. </
s
>
<
s
xml:id
="
echoid-s12494
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>