Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
501
(481)
502
(482)
503
(483)
504
(484)
505
(485)
506
(486)
507
(487)
508
(488)
509
(489)
510
(490)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(490)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1141
"
type
="
section
"
level
="
1
"
n
="
684
">
<
pb
o
="
490
"
file
="
0510
"
n
="
510
"
rhead
="
GEOMETRIÆ
"/>
<
figure
number
="
341
">
<
image
file
="
0510-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0510-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s12536
"
xml:space
="
preserve
">+</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s12537
"
xml:space
="
preserve
">Sint in æqualibus rectis lineis, QP, TY, tamquam in baſibus,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s12538
"
xml:space
="
preserve
">in eiſdem parallelis, AL, QY, quæcunq; </
s
>
<
s
xml:id
="
echoid-s12539
"
xml:space
="
preserve
">planæ figuræ CQPD,
<
lb
/>
HTYL, æqualiter analogæ iuxta dictas baſes, QP, ΓΥ, ductis au-
<
lb
/>
tem quotcunq; </
s
>
<
s
xml:id
="
echoid-s12540
"
xml:space
="
preserve
">baſibus parallelis, vt, ΛΧ, ΓV, βΚ, earum in figu-
<
lb
/>
ris conceptæ portiones integræ ſint, ac in altera figurarum pro-
<
lb
/>
pinquior baſi maior remotiori, vt ſi conceptæ in, CQPD, ſint, N
<
lb
/>
℟, I&</
s
>
<
s
xml:id
="
echoid-s12541
"
xml:space
="
preserve
">, EZ, & </
s
>
<
s
xml:id
="
echoid-s12542
"
xml:space
="
preserve
">in, HTYL, ipſæ, SX, RV, OK, iſtæ quidem integræ
<
lb
/>
ſint necnon ex. </
s
>
<
s
xml:id
="
echoid-s12543
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s12544
"
xml:space
="
preserve
">in figura, CQPD, N℟, maior, I&</
s
>
<
s
xml:id
="
echoid-s12545
"
xml:space
="
preserve
">; I&</
s
>
<
s
xml:id
="
echoid-s12546
"
xml:space
="
preserve
">, maior,
<
lb
/>
EZ, & </
s
>
<
s
xml:id
="
echoid-s12547
"
xml:space
="
preserve
">ſic in cæteris (erit enim etiam, SX, maior, RV, &</
s
>
<
s
xml:id
="
echoid-s12548
"
xml:space
="
preserve
">, RV, ma-
<
lb
/>
ior, OK, & </
s
>
<
s
xml:id
="
echoid-s12549
"
xml:space
="
preserve
">ſic in cæteris, cum ſint æqualiter analogæ iuxta ba-
<
lb
/>
ſes, QP, TY.) </
s
>
<
s
xml:id
="
echoid-s12550
"
xml:space
="
preserve
">Dico figuras, CQPD, HTYL, inter ſe æquales eſ-
<
lb
/>
ſe. </
s
>
<
s
xml:id
="
echoid-s12551
"
xml:space
="
preserve
">Si enim non ſint æquales, altera earum maior erit, ſit maior,
<
lb
/>
HTYL, ipſa, CQPD, ſpatio, +, tunc minoris figuræ baſis, QP,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0510-01
"
xlink:href
="
note-0510-01a
"
xml:space
="
preserve
">Poſt. 1.
<
lb
/>
l. 2.</
note
>
moueatur verſus, AD, ſemper ipſi, AD, æquidiſtanter, ac manẽ-
<
lb
/>
te iugiter puncto, P, in linea, PD, donec congruat ipſi, AD, igitur
<
lb
/>
punctum, Q, deſcribet lineam, QΓΑ, &</
s
>
<
s
xml:id
="
echoid-s12552
"
xml:space
="
preserve
">, QP, deſcribet parallelo-
<
lb
/>
grammum, AP, rectilineum, ſeu curuilineum, prout, AQ, DP,
<
lb
/>
fuerint rectæ, vel curuæ, erit autem, CΓΑ, tota extra figuram, CQ
<
lb
/>
PD, cum parallelæ, QP, in figura, CQPD, ipſi, QP, propinquio-
<
lb
/>
res remotioribus ſint ſemper maiores (quo pacto data baſi, & </
s
>
<
s
xml:id
="
echoid-s12553
"
xml:space
="
preserve
">cur-
<
lb
/>
ua linea, tota in eodem plano cum ipſa baſi, ac vni extremorum
<
lb
/>
eiuſdem conterminante, parallelogrammum curuilineum, ab ij@dẽ
<
lb
/>
apprehenium, deſcribere docemur) ſimiliter compleatur paralle-
<
lb
/>
logrammum, FY, ducaturquæ, ΓV, parallela, QY, b fariam diui-
<
lb
/>
dens altitud nem figurari m, CQPD, HTYL, reſpectu, QY, aſſum-
<
lb
/>
ptam, ſecanſque, AQ, in, Γ, CQ, in, I, DP, in, &</
s
>
<
s
xml:id
="
echoid-s12554
"
xml:space
="
preserve
">, FT, in, Π, HT,
<
lb
/>
in, R, &</
s
>
<
s
xml:id
="
echoid-s12555
"
xml:space
="
preserve
">, LY, in, V, per, ΓV, igitur diuidetur </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>