Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
511
(491)
512
(492)
513
(493)
514
(494)
515
(495)
516
(496)
517
(497)
518
(498)
519
(499)
520
(500)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(497)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1150
"
type
="
section
"
level
="
1
"
n
="
689
">
<
pb
o
="
497
"
file
="
0517
"
n
="
517
"
rhead
="
LIBER VII.
"/>
</
div
>
<
div
xml:id
="
echoid-div1152
"
type
="
section
"
level
="
1
"
n
="
690
">
<
head
xml:id
="
echoid-head723
"
xml:space
="
preserve
">THEOREMA II. PROPOS. II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s12660
"
xml:space
="
preserve
">FIguræ planæ quæcumq; </
s
>
<
s
xml:id
="
echoid-s12661
"
xml:space
="
preserve
">in eiſdem parallelis conſtitu-
<
lb
/>
tæ, in quibus, ductis quibuſcumq; </
s
>
<
s
xml:id
="
echoid-s12662
"
xml:space
="
preserve
">eiſdem parallelis
<
lb
/>
æquidiſta t@bus rectis lineis, conceptæ cuiuſcumq; </
s
>
<
s
xml:id
="
echoid-s12663
"
xml:space
="
preserve
">rectæ
<
lb
/>
lineæ portiones ſunt inter ſe, vt cuiuſlibet alterius in eiſdẽ
<
lb
/>
figuris conceptæ portiones (homologis tamen in eadem
<
lb
/>
figura ſemper exiſtentibus) eandem inter ſe proportionem
<
lb
/>
habebunt, quam dictæ portiones. </
s
>
<
s
xml:id
="
echoid-s12664
"
xml:space
="
preserve
">Dicantur autem pro-
<
lb
/>
portionaliter analogæ, ac etiam, ſi libuerit, iuxta regulas
<
lb
/>
ipſas parallelas, in quibus exiſtunt.</
s
>
<
s
xml:id
="
echoid-s12665
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
347
">
<
image
file
="
0517-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0517-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s12666
"
xml:space
="
preserve
">Sint duæ quælibet figuræ planæ, Β&</
s
>
<
s
xml:id
="
echoid-s12667
"
xml:space
="
preserve
">℟ΚΓΔ, CΦλ, inter paralle-
<
lb
/>
las AD, ΧΩ, conſtitutæ, ducta vero vtcumq; </
s
>
<
s
xml:id
="
echoid-s12668
"
xml:space
="
preserve
">EQ, prædictis paral-
<
lb
/>
lela, eiuſdem portiones in figura, Β&</
s
>
<
s
xml:id
="
echoid-s12669
"
xml:space
="
preserve
">Δ, conceptæ, quæ ſint, HI, L
<
lb
/>
M, ſimul ſumptæ ſint ad eam, ſeu ad eas, quæ concipiuntur in fi-
<
lb
/>
gura, CΦλ, vt aliæ quælibet ſimiliter ſumptæ, nempè ex. </
s
>
<
s
xml:id
="
echoid-s12670
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s12671
"
xml:space
="
preserve
">vt, & </
s
>
<
s
xml:id
="
echoid-s12672
"
xml:space
="
preserve
">
<
lb
/>
℟ΓΔ, ad, Φλ. </
s
>
<
s
xml:id
="
echoid-s12673
"
xml:space
="
preserve
">Dica figuram, Β&</
s
>
<
s
xml:id
="
echoid-s12674
"
xml:space
="
preserve
">℟κΓΔ, ad figuram, CΦλ, eſſe vt,
<
lb
/>
HI, LM, ad, NO, velvt, &</
s
>
<
s
xml:id
="
echoid-s12675
"
xml:space
="
preserve
">℟, ΓΔ, ad, Φλ, vel vt quęlibet aliæ ſi-
<
lb
/>
militer ſumptæ. </
s
>
<
s
xml:id
="
echoid-s12676
"
xml:space
="
preserve
">Accipiantur in, Φλ, producta verſus, λ, quotcũq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s12677
"
xml:space
="
preserve
">eidem, Φλ, æquales, vt; </
s
>
<
s
xml:id
="
echoid-s12678
"
xml:space
="
preserve
">λ2, ſimiliter quælibet linearum figuræ, CΦ
<
lb
/>
λ, producatur, & </
s
>
<
s
xml:id
="
echoid-s12679
"
xml:space
="
preserve
">in ipſa intelligantur tot aſſumptæ æquales vni-
<
lb
/>
cuiq; </
s
>
<
s
xml:id
="
echoid-s12680
"
xml:space
="
preserve
">productarum, quot aſſumptæ ſunt æquales ipſi, Φλ, ex.</
s
>
<
s
xml:id
="
echoid-s12681
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s12682
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>