Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
511
512
513
514
515
516
517
518
519
520
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
xlink:href
="
039/01/518.jpg
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
I.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Inertiæ vis deſinitur p. </
s
>
<
s
>2 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Jovis </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diſtantia a Sole 361, </
s
>
</
p
>
<
p
type
="
main
">
<
s
>ſemidiameter apparens 371, 3 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>ſemidiameter vera 371, 14 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>attractiva vis quanta ſit 370, 33 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>pondus corporum in ejus ſuperficie 371, 19 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>deniitas 371, 37 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>quantitas materiæ 3: 1, 27 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>perturbatio a Saturno quanta ſit 375, 33 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diametrorum proportio computo exhibetur
<
lb
/>
381, 27 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>converſio citcum axem quo tempore abſolvi
<
lb
/>
tur 381, 25 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>cingulæ cauſa ſubindicatur 444 32. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
L.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Locus definitur, & diſtinguitur in abſolutum &
<
lb
/>
relativum 6, 12 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Loca corporum in Sectionibus conicis moto
<
lb
/>
rum inveniuntur ad tempus aſſignatum I,
<
lb
/>
Sect. </
s
>
<
s
>6 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Lucis </
s
>
</
p
>
<
p
type
="
main
">
<
s
>propagatio non eſt inſtantanea 207, 5; non
<
lb
/>
fit per agitationem Medii alicujus Ætherci
<
lb
/>
342, 36 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>velocitas in diverſis Mediis diverſa I, 95 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>reflexio quædam explicatur I, 96 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>refractio explicatur I, 94; non ſit in puncto
<
lb
/>
ſolum incidentiæ 207, 29 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>incurvatio prope corporum terminos Expe
<
lb
/>
rimentis obſervata 207, 8 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Lunæ </
s
>
</
p
>
<
p
type
="
main
">
<
s
>corporis figura computo colligitur III, 38 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>inde cauſa patefacta, cur candem ſemper fa
<
lb
/>
ciem in Terram obvertat 432, 9 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>& libra ioncs explicantur III, 17 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diameter meliocris apparens 430, 12 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diameter mediocris 430, 17 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>pondus corporum in ejus ſuperficie 430, 20 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>denſitas 430, 15 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>quantitas materiæ 430, 19 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diſtantia mediocris a Terra quot continet
<
lb
/>
maximas Terræ ſemidiametros 430, 25,
<
lb
/>
quot mediocres 431, 18 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>parallaxis maxima in longitudinem paulo ma
<
lb
/>
jor eſt quam paraliaxis maxima in latitu
<
lb
/>
dinem 387, 8 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>vis ad Mare movendum quanta ſit III, 37;
<
lb
/>
non ſentiri poteſt in Experimentis pendu
<
lb
/>
lorum, vel in Staticis aut Hydroſtaticis
<
lb
/>
quibuſcunque 430, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>tempus periodicum 430, 32 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>tempus revolutionis ſynodicæ 398, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>motus medius cum diurno motu Terræ col
<
lb
/>
<
lb
/>
latus paulatim accelerari deprehenditur ab
<
lb
/>
<
emph
type
="
italics
"/>
Helleio
<
emph.end
type
="
italics
"/>
481, 16 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Lunæ motus & motuum inæqualitates a cauſis
<
lb
/>
ſuis derivantur III, 22: p. </
s
>
<
s
>421 &
<
expan
abbr
="
ſeqq.
">ſeqque</
expan
>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>tardius revolvitur Luna dilatato Orbe, in pe
<
lb
/>
rihelio Terræ, citius in ophelio, contracto
<
lb
/>
Orbe III, 22: 421, 6 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>tardius revolvitur, dilatato Orbe, in Apogæi
<
lb
/>
Syzygiis cum Sole; citius in Quadraturis
<
lb
/>
Apogæi, contracto Orbe 422, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>tardius revolvitur, dilatato Orbe, in Syzygiis
<
lb
/>
Nodi cum Sole; citius in Quadraturis No
<
lb
/>
di, contracto Orbe 422, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>tardius movetur in Quadraturis ſuis cum Sole,
<
lb
/>
citius in Syzygiis; & radio ad Terram
<
lb
/>
ducto deſeribit aream pro tempere mino
<
lb
/>
rem in priore caſu, majorem in poſteriore
<
lb
/>
III, 22: Inæqualitas harum Arearum com
<
lb
/>
putatur III, 26. Orbem inſuper habet ma
<
lb
/>
gis curvum & longius a Terra recedit in
<
lb
/>
priore caſu, minus curvum habet Orbem
<
lb
/>
& propius ad Terram accedit in poſteriore
<
lb
/>
III, 22. Orbis hujus figura & proportio
<
lb
/>
diametrorum ejus computo colligitur III,
<
lb
/>
28. Et ſabinde proponitur methodus in
<
lb
/>
veniendi diſtantiam Lunæ a Terra ex motu
<
lb
/>
ejus horario III, 27 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Apogæum tardius movetur in Aphelio Terræ,
<
lb
/>
velocius in Perihclio III, 22: 421, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Apogæum ubi eſt in Solis Syzygiis, maxime
<
lb
/>
progreditur; in Quadraturis regreditur III,
<
lb
/>
22: 422, 37 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Eccentricitas maxima eſt in Apogæi Syzygiis
<
lb
/>
cum Sole, minima in Quadraturis III, 22:
<
lb
/>
422, 39 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nodi tardius moventur in Aphelio Terræ, ve
<
lb
/>
locius in Perihelio III, 22: 421, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nodi quieſcunt in Syzygiis ſuis cum Sole, &
<
lb
/>
velociſſime regrediuntur in Quadraturis
<
lb
/>
III, 22. Nodorum motus & inæqualitates
<
lb
/>
motuum computantur ex Theoria Gravi
<
lb
/>
tatis III, 30, 31, 32, 33 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Inclinatio Oibis ad Ecſipticam maxima eſt in
<
lb
/>
Syzygiis Nodorum cum Sole, minima in
<
lb
/>
Quadraturis I, 66 Cor. </
s
>
<
s
>10. Inclinationis va
<
lb
/>
riationes computantur ex Theoria Gravita
<
lb
/>
tis III, 34, 35 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Lunarium motuum Æquationes ad uſus Aſtro
<
lb
/>
nomicos p. </
s
>
<
s
>421 &
<
expan
abbr
="
ſeqq.
">ſeqque</
expan
>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus medii Lunæ </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio annua 421, 4 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio ſemeſtris prima 412, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio ſemeſtris ſecunda 422, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio centri prima 423, 20: p. </
s
>
<
s
>101 &
<
lb
/>
<
expan
abbr
="
ſeqq.
">ſeqque</
expan
>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio centri ſecunda 424, 15 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Variatio prima III, 29 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Variatio ſecunda 425, 5 </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>