Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
511
(491)
512
(492)
513
(493)
514
(494)
515
(495)
516
(496)
517
(497)
518
(498)
519
(499)
520
(500)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(498)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1152
"
type
="
section
"
level
="
1
"
n
="
690
">
<
p
>
<
s
xml:id
="
echoid-s12682
"
xml:space
="
preserve
">
<
pb
o
="
498
"
file
="
0518
"
n
="
518
"
rhead
="
GEOMETRIÆ
"/>
<
figure
xlink:label
="
fig-0518-01
"
xlink:href
="
fig-0518-01a
"
number
="
348
">
<
image
file
="
0518-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0518-01
"/>
</
figure
>
ca tantum, & </
s
>
<
s
xml:id
="
echoid-s12683
"
xml:space
="
preserve
">per omnium terminos ex parte, 2, tranſeat linea, C
<
lb
/>
P2, ſimiliter in alia figura, Β&</
s
>
<
s
xml:id
="
echoid-s12684
"
xml:space
="
preserve
">Δ, ſumantur quotcumq; </
s
>
<
s
xml:id
="
echoid-s12685
"
xml:space
="
preserve
">in ipſa, Δ&</
s
>
<
s
xml:id
="
echoid-s12686
"
xml:space
="
preserve
">,
<
lb
/>
producta verſus, &</
s
>
<
s
xml:id
="
echoid-s12687
"
xml:space
="
preserve
">, æquales ipſis, &</
s
>
<
s
xml:id
="
echoid-s12688
"
xml:space
="
preserve
">℟ΓΔ, fimul ſumptis, & </
s
>
<
s
xml:id
="
echoid-s12689
"
xml:space
="
preserve
">pro-
<
lb
/>
ductis reliquis in fig. </
s
>
<
s
xml:id
="
echoid-s12690
"
xml:space
="
preserve
">Β&</
s
>
<
s
xml:id
="
echoid-s12691
"
xml:space
="
preserve
">Δ, ipſi, &</
s
>
<
s
xml:id
="
echoid-s12692
"
xml:space
="
preserve
">Δ, parallelis, aliæ tot æquales
<
lb
/>
ſuis productis in directum capiantur, per quorum omnium termi-
<
lb
/>
nos tranſeant lineæ, BGZ, BFY. </
s
>
<
s
xml:id
="
echoid-s12693
"
xml:space
="
preserve
">Quoniam ergo figurę, BFYZG,
<
lb
/>
BGZ&</
s
>
<
s
xml:id
="
echoid-s12694
"
xml:space
="
preserve
">H, Β&</
s
>
<
s
xml:id
="
echoid-s12695
"
xml:space
="
preserve
">℟κΓΔ, ſunt in eiſdem parallelis, AD, ΧΩ; </
s
>
<
s
xml:id
="
echoid-s12696
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s12697
"
xml:space
="
preserve
">ductis
<
lb
/>
in eiſdem quomodocumq; </
s
>
<
s
xml:id
="
echoid-s12698
"
xml:space
="
preserve
">ipſis, AD, ΧΩ, parallelis, interceptæ in
<
lb
/>
figuris portiones ſunt æquales, ideò ip@æ figuræ, BYZ, BZ&</
s
>
<
s
xml:id
="
echoid-s12699
"
xml:space
="
preserve
">, Β& </
s
>
<
s
xml:id
="
echoid-s12700
"
xml:space
="
preserve
">
<
lb
/>
℟κΓΔ, æqualiter analogæ, & </
s
>
<
s
xml:id
="
echoid-s12701
"
xml:space
="
preserve
">ſubinde æquales, erunt: </
s
>
<
s
xml:id
="
echoid-s12702
"
xml:space
="
preserve
">Quo pa-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0518-01
"
xlink:href
="
note-0518-01a
"
xml:space
="
preserve
">Per ant.</
note
>
cto etiam oſtendemus figuras, Φ λ, λC2, æquales eſſe: </
s
>
<
s
xml:id
="
echoid-s12703
"
xml:space
="
preserve
">Quotu-
<
lb
/>
plex ergo eſt aggregatum ex, Υ℟, ΓΔ, aggregati ex, &</
s
>
<
s
xml:id
="
echoid-s12704
"
xml:space
="
preserve
">℟, ΓΔ, to-
<
lb
/>
tuplex erit aggregatum ex figuris, BYZ, BZ&</
s
>
<
s
xml:id
="
echoid-s12705
"
xml:space
="
preserve
">, Β&</
s
>
<
s
xml:id
="
echoid-s12706
"
xml:space
="
preserve
">℟κΓΔ, ſeu figu-
<
lb
/>
ra, ΒΥ℟κ @Δ, figuræ, Β&</
s
>
<
s
xml:id
="
echoid-s12707
"
xml:space
="
preserve
">℟κΓΔ; </
s
>
<
s
xml:id
="
echoid-s12708
"
xml:space
="
preserve
">ſimiliter quotuplex erit, Φ2, ipſi-
<
lb
/>
us, φλ, totuplex erit aggregatum ex figuris, Cφλ, Cλ2, hoc eſt figu-
<
lb
/>
ra, CΦ2, ipſius figuræ, CΦλ, habemus ergo æquè multiplices pri-
<
lb
/>
mæ, & </
s
>
<
s
xml:id
="
echoid-s12709
"
xml:space
="
preserve
">tertiæ vtcumq; </
s
>
<
s
xml:id
="
echoid-s12710
"
xml:space
="
preserve
">aſſumptas, ſimiliter & </
s
>
<
s
xml:id
="
echoid-s12711
"
xml:space
="
preserve
">æquè multiplices ſe-
<
lb
/>
cundæ, & </
s
>
<
s
xml:id
="
echoid-s12712
"
xml:space
="
preserve
">quartæ. </
s
>
<
s
xml:id
="
echoid-s12713
"
xml:space
="
preserve
">Quoniam verò ex. </
s
>
<
s
xml:id
="
echoid-s12714
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s12715
"
xml:space
="
preserve
">Υ℟, ΓΔ; </
s
>
<
s
xml:id
="
echoid-s12716
"
xml:space
="
preserve
">FI, LM, ſunt
<
lb
/>
æquè multiplices ipſarum, &</
s
>
<
s
xml:id
="
echoid-s12717
"
xml:space
="
preserve
">℟, ΓΔ; </
s
>
<
s
xml:id
="
echoid-s12718
"
xml:space
="
preserve
">HI, LM, ſimiliter, 2Φ, PN,
<
lb
/>
ſunt æquè multiplices ipſarum, Φλ, NO, ipſę verò, &</
s
>
<
s
xml:id
="
echoid-s12719
"
xml:space
="
preserve
">℟, ΓΔ, HI,
<
lb
/>
LM, φλ, NO, ſunt proportionales, ideò ſi aggregatum ex, Υ℟, ΓΔ,
<
lb
/>
adæquabitur ipſi, φ2, etiam aggregatum ex, FI, LM, adæquabitur
<
lb
/>
ipſi, NP, vt & </
s
>
<
s
xml:id
="
echoid-s12720
"
xml:space
="
preserve
">reliquæ omnes ſimiliter ſumptæ, & </
s
>
<
s
xml:id
="
echoid-s12721
"
xml:space
="
preserve
">conſequenter
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0518-02
"
xlink:href
="
note-0518-02a
"
xml:space
="
preserve
">Ex ant.</
note
>
etiam figura, ΒΥ℟κΓΔ, adæquabitur figuræ, Cφ2, ſi verò aggre-
<
lb
/>
gutum ex, Υ℟, ΓΔ; </
s
>
<
s
xml:id
="
echoid-s12722
"
xml:space
="
preserve
">ſuperet, φ2, eodem modo patebit figuram, ΒΥ
<
lb
/>
℟κΓΔ, ſuperare figuram, Cφ2, vel ſuperari ab eadem, ſi, Υ℟, ΓΔ;</
s
>
<
s
xml:id
="
echoid-s12723
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>