Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
511
512
513
514
515
516
517
518
519
520
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
xlink:href
="
039/01/519.jpg
"/>
<
p
type
="
main
">
<
s
>Motus medii Apogæi </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio annua 421, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio ſemeſtris 422, 37 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Eccentricitatis </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio ſemeſtris 422, 37 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus medii Nodorum </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio annua 421, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio ſemeſtris III, 33 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Inclinationis Orbitæ ad Eclipticam </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Æquatio ſemeſtris 420, 22 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Lunarium motuum Theoria, qua Methodo ſta
<
lb
/>
bilienda ſit per Obſervationes 425, 33. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
M.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Magnetica vis 22, 13: 271, 25: 368, 29:
<
lb
/>
431, 23 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Maris æſtus a cauſis ſuis derivatur III, 24, 36, 37 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Martis </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diſtantia a Sole 361, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Aphelii motus 376, 33 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Materie</
s
>
</
p
>
<
p
type
="
main
">
<
s
>quantitas definitur p. </
s
>
<
s
>1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>vis inſita ſeu vis inertiæ definitur p. </
s
>
<
s
>2 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>vis impreſſa definitur p. </
s
>
<
s
>2 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>extenſio, durities, impenetrabilitas, mobilitas,
<
lb
/>
vis inertiæ, gravitas, qua ratione innoteſ
<
lb
/>
cunt 357, 16: 484, 10 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diviſibilitas nondum conſtat 358, 18 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Materia ſubtilis
<
emph
type
="
italics
"/>
Carteſianorum
<
emph.end
type
="
italics
"/>
ad examen quod
<
lb
/>
dam revocatur 292, 12 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Materia vel ſubtiiiſſima Gravitate non deſtitui
<
lb
/>
tur 368, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Mechanicæ, quæ dicuntur, Potentiæ explicantur
<
lb
/>
& demonſtrantur p. </
s
>
<
s
>14 & 15: p. </
s
>
<
s
>23 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Mercurii </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diſtantia a Sole 361, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Aphelii motus 376, 33 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Methodus </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Rationum primarum & ultimarum I, Sect. </
s
>
<
s
>1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Tranſmutandi figuras in alias quæ ſunt ejuſ
<
lb
/>
dem Ordinis Analytici I, Lem. </
s
>
<
s
>22. pag. </
s
>
<
s
>79 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Fluxionum II, Lem. </
s
>
<
s
>2. p. </
s
>
<
s
>224 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Differentialis III, Lemm. </
s
>
<
s
>5 & 6. pagg. </
s
>
<
s
>446
<
lb
/>
& 447 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Inveniendi Curvarum omnium quadraturas
<
lb
/>
proxime veras 447, 8 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Serierum convergentium adhibetur ad ſolu
<
lb
/>
tionem Problematum difficiliorum p. </
s
>
<
s
>127:
<
lb
/>
128: 202: 235: 414 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus quantitas definitur p. </
s
>
<
s
>1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus abſolutus & relativus p. </
s
>
<
s
>6: 7: 8: 9 2b
<
lb
/>
invicem ſecerni poſſunt, exemplo demonſtra
<
lb
/>
tur p. </
s
>
<
s
>10 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus Leges p. </
s
>
<
s
>12 &
<
expan
abbr
="
ſeqq.
">ſeqque</
expan
>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motuum compoſitio & reſolutio p. </
s
>
<
s
>14 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus corporum congredientium poſt reflexio
<
lb
/>
nem, quali Experimento recte colligi poſſunt,
<
lb
/>
<
lb
/>
oſtenditur 19, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus corporum </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in Conicis ſectionibus eccentricis I, Sect. </
s
>
<
s
>3 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in Orbibus mobilibus I, Sect. </
s
>
<
s
>9 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in Superſiciebus datis & Funependulorum
<
lb
/>
motus reciprocus I, Sect. </
s
>
<
s
>10 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus corporum viribus centripetis ſe mutuo
<
lb
/>
petentium I, Sect. </
s
>
<
s
>11 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus corporum Minimorum, quæ viribus cen
<
lb
/>
tripetis ad ſingulas Magni alicujus corporis
<
lb
/>
partes tendentibus agitantur I, Sect. </
s
>
<
s
>14 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus corporum quibus reſiſtitur </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in ratione velocitatis II, Sect. </
s
>
<
s
>1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in duplicata ratione velocitatis II, Sect. </
s
>
<
s
>2 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>partim in ratione velocitatis, partim in ejuſ
<
lb
/>
dem ratione duplicata II, Sect. </
s
>
<
s
>3 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus </
s
>
</
p
>
<
p
type
="
main
">
<
s
>corporum ſola vi inſita progredientium in
<
lb
/>
Mediis reſiſtentibus II, 1, 2, 5, 6, 7, 11,
<
lb
/>
12: 302, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>corporum recta aſcendentium vel deſcenden
<
lb
/>
tium in Mediis reſiſtentibus, agente vi Gra
<
lb
/>
vitatis uniformi II, 3, 8, 9, 40, 13, 14 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>corporum projectorum in Mediis reſiftenti
<
lb
/>
bus, agente vi Gravitatis unifor mi II, 4, 10 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>corporum circumgyrantium in Mediis reſi
<
lb
/>
ſtentibus II, Sect. </
s
>
<
s
>4 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>corporum Funependulorum in Mediis reſi
<
lb
/>
ſtentibus II, Sect. </
s
>
<
s
>6 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus & reſiſtentia Fluidorum II, Sect. </
s
>
<
s
>7 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus per Fluida propagatus II, Sect. </
s
>
<
s
>8 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Motus circularis ſeu Vorticoſus Fluidorum II,
<
lb
/>
Sect. </
s
>
<
s
>9 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Mundus originem non habet ex cauſis Mecha
<
lb
/>
nicis p. </
s
>
<
s
>482, 12. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
N.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Navium conſtructioni Propoſitio non inutilis
<
lb
/>
300, 4. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
O.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Opticarum ovalium inventio quam
<
emph
type
="
italics
"/>
Carteſius
<
emph.end
type
="
italics
"/>
ce
<
lb
/>
laverat I, 97.
<
emph
type
="
italics
"/>
Carteſiani
<
emph.end
type
="
italics
"/>
Problematis genera
<
lb
/>
lior ſolutio I, 98 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Orbitarum inventio </
s
>
</
p
>
<
p
type
="
main
">
<
s
>quas corpora deſcribunt, de loco dato data
<
lb
/>
cum velocitate, ſecundum datum rectam
<
lb
/>
egreſſa; ubi vis centripeta eſt reciproce ut
<
lb
/>
quadratum diſtantiæ & vis illius quantitas
<
lb
/>
abſoluta cognoſcitur I, 17 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>quas corpora deſcribunt ubi vires centripetæ
<
lb
/>
ſunt reciproce ut cubi diſtantiarum 45, 18:
<
lb
/>
118, 27: 125, 25 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>quas corpora viribus quibuſcunque centripetis
<
lb
/>
agitata deſcribunt I, Sect. </
s
>
<
s
>8. </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>