Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
511
(491)
512
(492)
513
(493)
514
(494)
515
(495)
516
(496)
517
(497)
518
(498)
519
(499)
520
(500)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(499)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1152
"
type
="
section
"
level
="
1
"
n
="
690
">
<
p
>
<
s
xml:id
="
echoid-s12723
"
xml:space
="
preserve
">
<
pb
o
="
499
"
file
="
0519
"
n
="
519
"
rhead
="
LIBER VII.
"/>
ſupereretur à, φ2, ergo prima ad ſecundam erit, vt tertia ad quar-
<
lb
/>
tam. </
s
>
<
s
xml:id
="
echoid-s12724
"
xml:space
="
preserve
">f. </
s
>
<
s
xml:id
="
echoid-s12725
"
xml:space
="
preserve
">figura, Β&</
s
>
<
s
xml:id
="
echoid-s12726
"
xml:space
="
preserve
">℟ΚΓΔ, ad figuram, Cφλ, erit, vt aggregatum
<
lb
/>
ex, &</
s
>
<
s
xml:id
="
echoid-s12727
"
xml:space
="
preserve
">℟, ΓΔ; </
s
>
<
s
xml:id
="
echoid-s12728
"
xml:space
="
preserve
">ad, φλ, vel vt aggregatum ex, HI, LM, ad, NO, ſeu
<
lb
/>
vt quælibet aliæ duæ ſimiliter ſumptę, quod erat oſtendendum,
<
lb
/>
Dicantur autem dictę figuræ proportionaliter analogę iuxta regu-
<
lb
/>
lam, AD, vel, ΧΩ.</
s
>
<
s
xml:id
="
echoid-s12729
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1154
"
type
="
section
"
level
="
1
"
n
="
691
">
<
head
xml:id
="
echoid-head724
"
xml:space
="
preserve
">THEOREMA III. PROPOS. III.</
head
>
<
p
>
<
s
xml:id
="
echoid-s12730
"
xml:space
="
preserve
">FIguræ ſolidæ quæcumq; </
s
>
<
s
xml:id
="
echoid-s12731
"
xml:space
="
preserve
">in eiſdem planis parallelis
<
lb
/>
conſtitutæ, in quibus ductis quibuſcumque planis di-
<
lb
/>
ctis parallelis æquidiſtantibus, coneeptæ cuiuſcumq; </
s
>
<
s
xml:id
="
echoid-s12732
"
xml:space
="
preserve
">ſic
<
lb
/>
ducti plani in ipſis ſolidis figurę planę ſunt inter ſe, vt eiuſ-
<
lb
/>
modi cuiuſlibet alterius plani in eiſdem ſolis conceptæ ſi-
<
lb
/>
guræ (homologis tamen in eodem ſolido ſemper exiſter ti-
<
lb
/>
bus) eandem inter ſe, quam dictæ iam-conceptæ cuiuſcũq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s12733
"
xml:space
="
preserve
">plani figuræ, rationem habebunt. </
s
>
<
s
xml:id
="
echoid-s12734
"
xml:space
="
preserve
">Dicanrur autem figurę
<
lb
/>
proportionaliter analogæ, iuxta regulas ipſa plana paral-
<
lb
/>
lela, in quibus exiſtunt.</
s
>
<
s
xml:id
="
echoid-s12735
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s12736
"
xml:space
="
preserve
">Sint duę quelibet fig. </
s
>
<
s
xml:id
="
echoid-s12737
"
xml:space
="
preserve
">ſolidę, AMEGF, PQRY, in eiſdem planis
<
lb
/>
parallelis conſtitutę; </
s
>
<
s
xml:id
="
echoid-s12738
"
xml:space
="
preserve
">ductis verò quibuſcumq; </
s
>
<
s
xml:id
="
echoid-s12739
"
xml:space
="
preserve
">planis præfatis pa-
<
lb
/>
rallelis ęquidiſtantibus, eorum conceptę, in ſolidis figurę ſint vnius
<
lb
/>
plani ex. </
s
>
<
s
xml:id
="
echoid-s12740
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s12741
"
xml:space
="
preserve
">figuræ, NSTV, ΖΩΔ, alteriusautem, MEGF, QRY,
<
lb
/>
vel contingat has eſſe ſolidorum baſes, ac in altero planorum pa-
<
lb
/>
rallelorum, ſolida, AMEGF, PQRY, contingentium, ſit verò figu-
<
lb
/>
ra, MEGF, ad figuram, QRY, vt figura, NSTV, ad figuram, ΖΩ
<
lb
/>
Δ, homologis nempè in eodem ſolido exiſtentibus. </
s
>
<
s
xml:id
="
echoid-s12742
"
xml:space
="
preserve
">Dico ſolidum,
<
lb
/>
AMEGF, ad ſolidum, PQRY, eſſe vt, NSTV, figura, ad figuram,
<
lb
/>
ΖΩΔ, vel vt figura, MEGF, ad figuram, QRY. </
s
>
<
s
xml:id
="
echoid-s12743
"
xml:space
="
preserve
">Ducatur enim in
<
lb
/>
figura, MEGF, vtcumq; </
s
>
<
s
xml:id
="
echoid-s12744
"
xml:space
="
preserve
">recta, EF, ad illius ambitum terminata,
<
lb
/>
cui ducta parallela, SV, in figura, NSTV, producantur ambæ in-
<
lb
/>
definitè verſus puncta, S, E, in quibus ſumantur vtcũq; </
s
>
<
s
xml:id
="
echoid-s12745
"
xml:space
="
preserve
">ęquè mul-
<
lb
/>
tiplices, BS, CE, ſimiliter in eiſdem figuris ductis ali js eiſ dem, SV.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s12746
"
xml:space
="
preserve
">EF, ęquidiſtantibus, ſumãtur earum pariter ęquè, multiplices iux-
<
lb
/>
ta prędictarum multiplicitatem, & </
s
>
<
s
xml:id
="
echoid-s12747
"
xml:space
="
preserve
">omnium termini ſint in lineis,
<
lb
/>
NBT, MICHG, ſicut ipſarum partium termini ſint in lineis, NST,
<
lb
/>
NOT, NBT, MEG, MDG, MCG, traductis verò alijs quotcumq; </
s
>
<
s
xml:id
="
echoid-s12748
"
xml:space
="
preserve
">
<
lb
/>
planis pręfatis parallelis, ac ipſa ſolida ſecantibus, hoc idem fiat
<
lb
/>
circa ipſorum figuras in ipſis ſolidis conceptas, omnium verò </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>