Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
51
52
53
54
55
56
57
58
59
60
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
xlink:href
="
039/01/052.jpg
"
pagenum
="
24
"/>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
note11
"/>
tate conjunctim; & ſimiliter Reſiſtentis reactio æſtimetur conjun
<
lb
/>
ctim ex ejus partium ſingularum velocitatibus & viribus reſiſtendi
<
lb
/>
ab earum attritione, cohæſione, pondere, & acceleratione ori
<
lb
/>
undis; erunt actio & reactio, in omni inſtrumentorum uſu,
<
lb
/>
ſibi invicem ſemper æquales. </
s
>
<
s
>Et quatenus actio propagatur per
<
lb
/>
inſtrumentum & ultimo imprimitur in corpus omne reſiſtens,
<
lb
/>
ejus ultima determinatio determinationi reactionis ſemper erit
<
lb
/>
contraria.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note11
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
</
chap
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
DE
<
lb
/>
MOTU CORPORUM
<
lb
/>
LIBER PRIMUS.
<
emph.end
type
="
center
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
SECTIO I.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
De Methodo Rationum primarum & ultimarum, cujus ope ſequentia
<
lb
/>
demonſtrantur.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA I.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
QUantitates, ut & quantitatum rationes, quæ ad æqualitatem
<
lb
/>
tempore quovis finito conſtanter tendunt, & ante finem tempo
<
lb
/>
ris illius propius ad invicem accedunt quam pro data quavis diffe
<
lb
/>
tia, fiunt ultimo æquales.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Si negas; fiant ultimò inequales, & ſit earum ultima differentia
<
lb
/>
<
emph
type
="
italics
"/>
D.
<
emph.end
type
="
italics
"/>
Ergo nequeunt propius ad æqualitatem accedere quam pro
<
lb
/>
data differentia
<
emph
type
="
italics
"/>
D:
<
emph.end
type
="
italics
"/>
contra hypotheſin. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>