Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
511
512
513
514
515
516
517
518
519
520
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
xlink:href
="
039/01/520.jpg
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
P.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Parabola, qua lege vis centripetæ tendentis ad
<
lb
/>
umbilicum figuræ, deſcribitur a corpore revol
<
lb
/>
vente I, 13 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Pendulorum affectiones explicantur I, 50, 51,
<
lb
/>
52, 53: II, Sect. </
s
>
<
s
>6. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Pendulotum iſochronorum longitudines diverſæ
<
lb
/>
in diverſis loeorum Latitudinibus inter ſe
<
lb
/>
conſeruntur, tum per Obſervatienes, tum per
<
lb
/>
Theoriam Gravitatis III, 20 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Philoſophandi Regulæ p. </
s
>
<
s
>357 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Planetæ </
s
>
</
p
>
<
p
type
="
main
">
<
s
>non deferuntur a Vorticibus corporeis 352,
<
lb
/>
37: 354, 25: 481, 21 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Primarii </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Solem cingunt 360, 7 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>moventur in Ellipſibus umbilicum habenti
<
lb
/>
bus in centro Solis III, 13 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>radiis ad Solem ductis deſcribunt areas tem
<
lb
/>
poribus proportionales 361, 15: III, 13 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>temporibus periodicis revolvuntur quæ ſunt
<
lb
/>
in ſeſquiplicata ratione diſtantiarum a
<
lb
/>
Sole 360, 17: III, 13 & I, 15 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>retinentur in Orbibus ſuis a vi Gravitatis
<
lb
/>
quæ reſpicit Solem, & eſt reciproce ut
<
lb
/>
quadratum diſtantiæ ab ipſius centro
<
lb
/>
III, 2, 5 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Secundarii </
s
>
</
p
>
<
p
type
="
main
">
<
s
>moventur in Ellipſibus umbilicum habenti
<
lb
/>
bus in centro Primariorum III, 22 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>radiis ad Primarios ſuos ductis deſcribunt
<
lb
/>
areas temporibus proportionales 359, 3,
<
lb
/>
22: 361, 27: III, 22 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>temporibus periodicis revolvuntur quæ ſunt
<
lb
/>
in ſeſquiplicata ratione diſtantiarum a
<
lb
/>
Primariis ſuis 359, 3, 22: III, 22 & I, 15 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>retinentur in Orbibus ſuis a vi Gravitatis
<
lb
/>
quæ reſpicit Primarios, & eſt reciproce
<
lb
/>
ut quadratum diſtantiæ ab eorum centris
<
lb
/>
III, 1, 3, 4, 5 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Planetarum </
s
>
</
p
>
<
p
type
="
main
">
<
s
>diſtantiæ a Sole 361, 1 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Orbium Aphelia & Nodi prope quieſcunt
<
lb
/>
III, 14 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Orbes determinantur III, 15, 16 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>loca in Orbibus inveniuntur I, 31 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>denſitas calori quem a Sole recipiunt, ac
<
lb
/>
commodatur 372, 7 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>converſiones diurnæ ſunt æquabiles III, 17</
s
>
</
p
>
<
p
type
="
main
">
<
s
>axes ſunt minores diametris quæ ad eoſdem
<
lb
/>
axes normaliter ducuntur III, 18 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Pondera corporum </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in Terram vel Solem vel Planetam quemvis,
<
lb
/>
paribus diſtantiis ab eorum centris, ſunt ut
<
lb
/>
quantitates materiæ in corporibus III, 6 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>non pendent ab eorum formis & texturis
<
lb
/>
367, 35
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>in diverſis Terræ regionibus inveniuntur &
<
lb
/>
inter ſe comparantur III, 20 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Problematis </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Kepleriani
<
emph.end
type
="
italics
"/>
ſolutio per Trochoidem & per
<
lb
/>
Approximationes I, 31 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Veterum
<
emph.end
type
="
italics
"/>
de quatuor lineis, a
<
emph
type
="
italics
"/>
Pappo
<
emph.end
type
="
italics
"/>
memorati,
<
lb
/>
a
<
emph
type
="
italics
"/>
Carteſio
<
emph.end
type
="
italics
"/>
par calculum Analyticum tentati,
<
lb
/>
compoſitio Geometrica 70, 19 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Projectilia, ſepoſita Medii reſiſtentia, moveri in
<
lb
/>
Parabola colligitur 47, 23: 202, 23: 236, 29 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Projectilium motus in Mediis reſiſtentibus II,
<
lb
/>
4, 10 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Pulſuam Aeris, quibes Soni propagantur, deter
<
lb
/>
minantur intervalla ſeu latitudines II, 50: 344,
<
lb
/>
18. Hæc intervalla in apertarum Fiſtularum
<
lb
/>
ſonis æquari duplis longitudinibus Fiſtularum
<
lb
/>
veroſimile eſt 344, 26 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
expan
abbr
="
q.
">que</
expan
>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Quadratura generalis Ovalium dari non poteſt
<
lb
/>
per finitos terminos I, Lem, 28. p. </
s
>
<
s
>98 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Qualitates corporum qua ratione innoteſcunt &
<
lb
/>
admittuntur 357, 16 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Quies vera & relativa p. </
s
>
<
s
>6, 7, 8, 9. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
R.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Reſiſtentiæ quantitas </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in Mediis non continuis II, 35 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in Mediis continuis II, 38 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>in Mediis cujuſcunque generis 302, 32 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Reſiſtentiarum Theoria confirmatur </
s
>
</
p
>
<
p
type
="
main
">
<
s
>per Experimenta Pendulorum II, 30, 31, Sch. </
s
>
<
s
>
<
lb
/>
Gen. </
s
>
<
s
>p. </
s
>
<
s
>284 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>per Experimenta corporum cadentium II, 40,
<
lb
/>
Sch. </
s
>
<
s
>p. </
s
>
<
s
>319 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Reſiſtentia Mediorum </
s
>
</
p
>
<
p
type
="
main
">
<
s
>eſt ut eorundem denſitas, cæteris paribu,
<
lb
/>
290, 29: 291, 35: II, 33, 35, 38: 327, 14 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>eſt in duplicata ratione velocitatis corporum
<
lb
/>
quibus reſiſtitur, cæteris paribus 219, 24:
<
lb
/>
284, 33; II, 33, 35, 38: 324, 23 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>eſt in duplicata ratione diametri corporum
<
lb
/>
Sphærieorum quibus reſiſtitur, cæteris pa
<
lb
/>
ribus 288, 4: 289, 11: II, 33, 35, 38:
<
lb
/>
Sch. </
s
>
<
s
>p. </
s
>
<
s
>319 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>non minuitur ab actione Fluidi in partes po
<
lb
/>
ſticas corporis moti 312, 23 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Reſiſtentia Fluidorum duplex eſt; oriturque vel
<
lb
/>
ab Inertia materiæ fluidæ, vel ab Elaſticitate,
<
lb
/>
Tenacitate & Frictione partium ejus 318, 1.
<
lb
/>
Reſiſtentia quæ ſentitur in Fluidis fere tota
<
lb
/>
eſt prioris generis 326, 32, & minui non po
<
lb
/>
teſt per ſubtilitatem partium Fluidi, manente
<
lb
/>
denſitate 328, 7 </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Reſiſtentiæ Globi ad reſiſtentiam Cylindri pro
<
lb
/>
portio, in Mediis non continuis II, 34 </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>