Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
521
(501)
522
(502)
523
(503)
524
(504)
525
(505)
526
(506)
527
(507)
528
(508)
529
(509)
530
(510)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(505)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1164
"
type
="
section
"
level
="
1
"
n
="
696
">
<
p
>
<
s
xml:id
="
echoid-s12967
"
xml:space
="
preserve
">
<
pb
o
="
505
"
file
="
0525
"
n
="
525
"
rhead
="
LIBER VII.
"/>
LDGF, æquari ipſi, HZ {00/ }, &</
s
>
<
s
xml:id
="
echoid-s12968
"
xml:space
="
preserve
">, 3687, ſolido, ΣΓ2, pariter ex prima
<
lb
/>
huius colligemus. </
s
>
<
s
xml:id
="
echoid-s12969
"
xml:space
="
preserve
">In ſec. </
s
>
<
s
xml:id
="
echoid-s12970
"
xml:space
="
preserve
">D. </
s
>
<
s
xml:id
="
echoid-s12971
"
xml:space
="
preserve
">quod figura, LED, ad, OED, ſit vt,
<
lb
/>
LE, ad, EO, ſeu quod figura, QAMY, ad, TIMY, ſit vt, QY, ad, Y
<
lb
/>
T, ideſt vt, LE, ad, EO, vel quod figura, LFE, ad, OFE, ſfit vt, LE,
<
lb
/>
ad, EO, patet, ex prop. </
s
>
<
s
xml:id
="
echoid-s12972
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s12973
"
xml:space
="
preserve
">huius: </
s
>
<
s
xml:id
="
echoid-s12974
"
xml:space
="
preserve
">Quod verò ſolidum, LDFE, ad
<
lb
/>
ſolidum, ODFE, ſit vt figura, LEF, ad figuram, OEF, ideſi vt, LE,
<
lb
/>
ad, EO, manifeſtum eſt pariter ex 3. </
s
>
<
s
xml:id
="
echoid-s12975
"
xml:space
="
preserve
">huius. </
s
>
<
s
xml:id
="
echoid-s12976
"
xml:space
="
preserve
">In ſec. </
s
>
<
s
xml:id
="
echoid-s12977
"
xml:space
="
preserve
">F. </
s
>
<
s
xml:id
="
echoid-s12978
"
xml:space
="
preserve
">ſolidum, O
<
lb
/>
DFE, ad ſolidum, 3674, eſſe vt figura, EDF, ad figuram, 467,
<
lb
/>
pateb@t ex 3. </
s
>
<
s
xml:id
="
echoid-s12979
"
xml:space
="
preserve
">huius, ſunt enim dicta ſolida figuræ proportionali-
<
lb
/>
ter analogæ vt conſideranti manifeſtum erit. </
s
>
<
s
xml:id
="
echoid-s12980
"
xml:space
="
preserve
">Cætera huius prop.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s12981
"
xml:space
="
preserve
">cum Cor. </
s
>
<
s
xml:id
="
echoid-s12982
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s12983
"
xml:space
="
preserve
">prop. </
s
>
<
s
xml:id
="
echoid-s12984
"
xml:space
="
preserve
">18. </
s
>
<
s
xml:id
="
echoid-s12985
"
xml:space
="
preserve
">abſq; </
s
>
<
s
xml:id
="
echoid-s12986
"
xml:space
="
preserve
">methodo Indiuiſibilium ſubſiſtunt,
<
lb
/>
vt examinantifacilè apparebit.</
s
>
<
s
xml:id
="
echoid-s12987
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1165
"
type
="
section
"
level
="
1
"
n
="
697
">
<
head
xml:id
="
echoid-head730
"
xml:space
="
preserve
">THEOREMA VI. PROPOS. VI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s12988
"
xml:space
="
preserve
">QVæcunq; </
s
>
<
s
xml:id
="
echoid-s12989
"
xml:space
="
preserve
">de parallelogrammis oſtenduntur in Prop.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s12990
"
xml:space
="
preserve
">5. </
s
>
<
s
xml:id
="
echoid-s12991
"
xml:space
="
preserve
">6. </
s
>
<
s
xml:id
="
echoid-s12992
"
xml:space
="
preserve
">7. </
s
>
<
s
xml:id
="
echoid-s12993
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s12994
"
xml:space
="
preserve
">8. </
s
>
<
s
xml:id
="
echoid-s12995
"
xml:space
="
preserve
">Lib. </
s
>
<
s
xml:id
="
echoid-s12996
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s12997
"
xml:space
="
preserve
">eadem etiam de triangulis, con-
<
lb
/>
ditiones ibi ſuppoſitas circa ſuas baſes, & </
s
>
<
s
xml:id
="
echoid-s12998
"
xml:space
="
preserve
">altitudines, ſeu
<
lb
/>
latera æqualiter baſibus inclinata, habentibus, verifi-
<
lb
/>
cantur.</
s
>
<
s
xml:id
="
echoid-s12999
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s13000
"
xml:space
="
preserve
">Hæe Propoſitio maniſeſta eſt, cum enim expoſito quocunq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13001
"
xml:space
="
preserve
">triangulo, & </
s
>
<
s
xml:id
="
echoid-s13002
"
xml:space
="
preserve
">aſſumptis duobus quibuſuis lateribus angulum quē-
<
lb
/>
libet continentibus parallelogrammum compleri poſſit in illo an-
<
lb
/>
gulo, cuius triangulum erit dimidium, ideò quæcunq; </
s
>
<
s
xml:id
="
echoid-s13003
"
xml:space
="
preserve
">triangula
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0525-01
"
xlink:href
="
note-0525-01a
"
xml:space
="
preserve
">34. Primi
<
lb
/>
Elem.</
note
>
erunt, vt eorum completa paral clogramma, habentibus autem
<
lb
/>
triangulis circa baſes, & </
s
>
<
s
xml:id
="
echoid-s13004
"
xml:space
="
preserve
">altitudines, ſeu latera æqualiter baſibus
<
lb
/>
inclinata, præfatas conditiones, eam pariter habent completa
<
lb
/>
parallelogramma, & </
s
>
<
s
xml:id
="
echoid-s13005
"
xml:space
="
preserve
">de illis verificantur ea, quæ in dictis propo-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0525-02
"
xlink:href
="
note-0525-02a
"
xml:space
="
preserve
">4. huius,
<
lb
/>
cum An-
<
lb
/>
not.</
note
>
ſitionibus fuerunt propoſita, ergo eadem de eorum medietatibus,
<
lb
/>
hoc eſt de dictis triangulis verificabuntur. </
s
>
<
s
xml:id
="
echoid-s13006
"
xml:space
="
preserve
">Triangula ergo, quæ
<
lb
/>
ſunt in eadem altitudine inter ſe ſunt, vt baſes; </
s
>
<
s
xml:id
="
echoid-s13007
"
xml:space
="
preserve
">Et quæ ſunt in
<
lb
/>
ea dem, vel æqualibus baſibus, vt altitudines, vel vt latera, quæ
<
lb
/>
æqualiter baſi, ſeu baſibus, inclinantur. </
s
>
<
s
xml:id
="
echoid-s13008
"
xml:space
="
preserve
">Habent inter ſe rationem
<
lb
/>
compoſitam ex ratione baſium, & </
s
>
<
s
xml:id
="
echoid-s13009
"
xml:space
="
preserve
">altitudinum, vel laterum ęqua-
<
lb
/>
liter baſibus inclinatorum. </
s
>
<
s
xml:id
="
echoid-s13010
"
xml:space
="
preserve
">Habentia baſes altitudinibus, vel la-
<
lb
/>
teribus baſibus æqual ter incl natis, reciprocas, ſunt æqualia; </
s
>
<
s
xml:id
="
echoid-s13011
"
xml:space
="
preserve
">Et
<
lb
/>
quæ ſunt æqualia baſes habent altitudinibus, vel lateribus æqua-
<
lb
/>
liter baſibus inclinatis, reciprocas. </
s
>
<
s
xml:id
="
echoid-s13012
"
xml:space
="
preserve
">Et tandem ſimil a triangula
<
lb
/>
ſunt in dupla ratione laterum homologorum; </
s
>
<
s
xml:id
="
echoid-s13013
"
xml:space
="
preserve
">Quæ omnia etiam
<
lb
/>
Lib. </
s
>
<
s
xml:id
="
echoid-s13014
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s13015
"
xml:space
="
preserve
">Prop. </
s
>
<
s
xml:id
="
echoid-s13016
"
xml:space
="
preserve
">19. </
s
>
<
s
xml:id
="
echoid-s13017
"
xml:space
="
preserve
">Coroll. </
s
>
<
s
xml:id
="
echoid-s13018
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s13019
"
xml:space
="
preserve
">ex methodo Indiuiſibilium collige </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>