Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
531
(511)
532
(512)
533
(513)
534
(514)
535
(515)
536
(516)
537
(517)
538
(518)
539
(519)
540
(520)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(520)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1194
"
type
="
section
"
level
="
1
"
n
="
715
">
<
p
>
<
s
xml:id
="
echoid-s13434
"
xml:space
="
preserve
">
<
pb
o
="
520
"
file
="
0540
"
n
="
540
"
rhead
="
GEOMETRIÆ
"/>
limus etiam caſum intelligere cum tantum figura planaeſt in illius
<
lb
/>
ambitu; </
s
>
<
s
xml:id
="
echoid-s13435
"
xml:space
="
preserve
">hoc in ſchemate ant. </
s
>
<
s
xml:id
="
echoid-s13436
"
xml:space
="
preserve
">prop. </
s
>
<
s
xml:id
="
echoid-s13437
"
xml:space
="
preserve
">facilè percipiemus, in qua
<
lb
/>
ſint regulæ, SI, IH, continentes verò figuræ, QI, ΔΜ, quarum,
<
lb
/>
QI, ſupponatur eſſe parallelogrammum, ſed non in ambitu con-
<
lb
/>
tenti eiſdem ſolidi, quod ſit, CM, ΔΜ, verò ſit figura plana, quæ
<
lb
/>
debet in ambitu ſolidi reperiri, igitur conſimili methodo oſtende-
<
lb
/>
mus etiam, CM, eſſe cylindricum, in baſi, ΔΜ, conſtitutum. </
s
>
<
s
xml:id
="
echoid-s13438
"
xml:space
="
preserve
">Quod
<
lb
/>
ſicontinentes figuræ, QI, IO, fuerint ambo parallelogramma, ac
<
lb
/>
in ambitu contenti ſolidi, quod ſit, PI, manifeſtum eſt nedum, PI,
<
lb
/>
eſſe cylindricum, ſed etiam eſſe parallelepipedum, ſunt enim pla-
<
lb
/>
na, RI, PB, parallela, necnon, PH, eſt ſuperficies plana ipſi, QI,
<
lb
/>
parallela, ac, PS, eſt plana, necnon ipſi, HB, ſimiliter parallela,
<
lb
/>
quod oſtendere oportebat.</
s
>
<
s
xml:id
="
echoid-s13439
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1196
"
type
="
section
"
level
="
1
"
n
="
716
">
<
head
xml:id
="
echoid-head749
"
xml:space
="
preserve
">COROLLARIVM I.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s13440
"
xml:space
="
preserve
">_E_X hoc colligitur, ſi, ducta, EH, per, H, parallela, DC, in paral-
<
lb
/>
lelis, EH, DC, ind finitè productis, reperiatur alia quæcunq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13441
"
xml:space
="
preserve
">plana figura, vt, EHC, ſolidum rectangulum ſub parallelogrammo
<
lb
/>
propoſito, AC, ſeu illi analoga ſuperficie ſecundum regulam planum,
<
lb
/>
GC, & </
s
>
<
s
xml:id
="
echoid-s13442
"
xml:space
="
preserve
">ſub figura, FHC, in ambitu contenti ſolidi exi lente, quod ſit,
<
lb
/>
AFCH, ad contentum ſub eodem parallelogrammo, AC, ſeu illi ana-
<
lb
/>
loga ſuperficie ſecundum dictam regulam, & </
s
>
<
s
xml:id
="
echoid-s13443
"
xml:space
="
preserve
">ſub figura, HDC, dummo-
<
lb
/>
do ea ſit in ambitu pariter contenti ſolidii, eſſe vt figura, EHC, ad figu-
<
lb
/>
ram, HDC, ſunt cnim hæc ſolida, ABFHC, ABGHC, cylindrici in ea-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0540-01
"
xlink:href
="
note-0540-01a
"
xml:space
="
preserve
">5. huius.</
note
>
dem altitudine ſumpta reſpectu baſium, EHC, DHC, & </
s
>
<
s
xml:id
="
echoid-s13444
"
xml:space
="
preserve
">ideò ſunt inter
<
lb
/>
ſe vt ipſæ baſes, vnde cum ipſæ fuerint æquales etiam dicta ſolida re-
<
lb
/>
ctangula æqualia erunt.</
s
>
<
s
xml:id
="
echoid-s13445
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1198
"
type
="
section
"
level
="
1
"
n
="
717
">
<
head
xml:id
="
echoid-head750
"
xml:space
="
preserve
">COROLLARIVM II.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s13446
"
xml:space
="
preserve
">_H_Abetur inſuper ſi in eodem ſchemate ducatur in parallelogram-
<
lb
/>
mo, AC, quacumq; </
s
>
<
s
xml:id
="
echoid-s13447
"
xml:space
="
preserve
">parallela, HC, vt, RS, conſtituens paralle-
<
lb
/>
logrammum, RG, rectangulum ſolidu n ſub, AC, & </
s
>
<
s
xml:id
="
echoid-s13448
"
xml:space
="
preserve
">figura plana ex. </
s
>
<
s
xml:id
="
echoid-s13449
"
xml:space
="
preserve
">g.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13450
"
xml:space
="
preserve
">HDC, contentum, dummodo hæc ſit in ipſius ambitu, ad rectangulum
<
lb
/>
ſolidum ſub, RC, & </
s
>
<
s
xml:id
="
echoid-s13451
"
xml:space
="
preserve
">eadem figura, HDC, in huius etiam ambitu exi-
<
lb
/>
ſtente, ſeu ſub quacumq; </
s
>
<
s
xml:id
="
echoid-s13452
"
xml:space
="
preserve
">alia plana figura in eiſdem parallelis cum, H
<
lb
/>
DC, exiſtent, dummodo ſit in ipſius ambitu, regulis ijſdem, BC, CD, eſſe
<
lb
/>
vt parallelogrammum, AC, ad par allelogrammum, CR, ſeu vt, BC, ad,
<
lb
/>
CS; </
s
>
<
s
xml:id
="
echoid-s13453
"
xml:space
="
preserve
">Et ſi ſint etiam parallelogramma, HV, HD, habetur etiam rectaã-
<
lb
/>
gulum ſolidum ſub, AC, CE, ad rectangulum ſolidum ſub, RC, CT, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>