Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
541
(521)
542
(522)
543
(523)
544
(524)
545
(525)
546
(526)
547
(527)
548
(528)
549
(529)
550
(530)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(521)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1198
"
type
="
section
"
level
="
1
"
n
="
717
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s13453
"
xml:space
="
preserve
">
<
pb
o
="
521
"
file
="
0541
"
n
="
541
"
rhead
="
LIBER VII.
"/>
vt rect angulum, BCD, ad rectangulum, SCV, ſunt enim hæc plana ré
<
lb
/>
ctangula baſes dictorum rectangulorum ſolidorum, quæ ex dictis ſunt
<
lb
/>
parallelepipeda, ſeu cylindrici eiuſdem altitudinis ſumptæ reſpectu
<
lb
/>
dict arum baſium, & </
s
>
<
s
xml:id
="
echoid-s13454
"
xml:space
="
preserve
">ideò ſunt vt ipſæ baſes, hoc eſt vt dicta rectangu-
<
lb
/>
la, ſuppoſito tamen quod continentia parallelogramma ſint in ambitu
<
lb
/>
contentorum ſolidorum.</
s
>
<
s
xml:id
="
echoid-s13455
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1199
"
type
="
section
"
level
="
1
"
n
="
718
">
<
head
xml:id
="
echoid-head751
"
xml:space
="
preserve
">ANNOTATIO.</
head
>
<
p
>
<
s
xml:id
="
echoid-s13456
"
xml:space
="
preserve
">POterant quidem exhiberi parallelogramma, AC, RC, in eodē
<
lb
/>
plano cum figuris, EHC, CHD, & </
s
>
<
s
xml:id
="
echoid-s13457
"
xml:space
="
preserve
">in eiſdem cum ipſis paral-
<
lb
/>
lelis, vt, HY, proipſo, AC, &</
s
>
<
s
xml:id
="
echoid-s13458
"
xml:space
="
preserve
">, HR, proipſo, RC, & </
s
>
<
s
xml:id
="
echoid-s13459
"
xml:space
="
preserve
">intelligi me-
<
lb
/>
taliter deſcripta ſolida rectang. </
s
>
<
s
xml:id
="
echoid-s13460
"
xml:space
="
preserve
">iam dicta ſub iſtis in eodem plano
<
lb
/>
iacentibus fig. </
s
>
<
s
xml:id
="
echoid-s13461
"
xml:space
="
preserve
">prout dictum eſt, quo pacto eadem intelligi potuiſ-
<
lb
/>
ſent, ſed cum nonnihil difficile captu initio huius nouæ doctrinæ
<
lb
/>
hoc mihi fore videretur, eadem vt ſupra exhibere malui, verunta-
<
lb
/>
men valde expediet pro ſequentibus aſſuefieri dictorum ſolidorum
<
lb
/>
mentali deſcriptioni, exhibitis continentibus eadem fig. </
s
>
<
s
xml:id
="
echoid-s13462
"
xml:space
="
preserve
">(quæ, pu-
<
lb
/>
to, ſemper planæ erunt ) in eiſdem parallelis conſtitutis, quemad-
<
lb
/>
modum duabus quibuſcung; </
s
>
<
s
xml:id
="
echoid-s13463
"
xml:space
="
preserve
">rectis lineis exhibitis, illico rectangu-
<
lb
/>
lum ſub ipſis mentaliter deſcribere ſolemus, ſicuti & </
s
>
<
s
xml:id
="
echoid-s13464
"
xml:space
="
preserve
">quadratum
<
lb
/>
datæ rectæ lineæ cuiuſcumq; </
s
>
<
s
xml:id
="
echoid-s13465
"
xml:space
="
preserve
">abſque eo, quod ſemper in ſchema-
<
lb
/>
tibus ipſa deſcripta exhibeantur, ſic ergo & </
s
>
<
s
xml:id
="
echoid-s13466
"
xml:space
="
preserve
">ſolida rectang. </
s
>
<
s
xml:id
="
echoid-s13467
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s13468
"
xml:space
="
preserve
">ſolida
<
lb
/>
quadrata, ſub duabus planis figuris in eiſdem parallelis exiſtentibus
<
lb
/>
iuxta datas regulas contenta, ad figurarum confuſionem euitan-
<
lb
/>
dam & </
s
>
<
s
xml:id
="
echoid-s13469
"
xml:space
="
preserve
">nos quoq; </
s
>
<
s
xml:id
="
echoid-s13470
"
xml:space
="
preserve
">mentaliter vt plurimum deſcribemus.</
s
>
<
s
xml:id
="
echoid-s13471
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1200
"
type
="
section
"
level
="
1
"
n
="
719
">
<
head
xml:id
="
echoid-head752
"
xml:space
="
preserve
">THEOREMA XIV. PROPOS. XIV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s13472
"
xml:space
="
preserve
">SI duo triangula fuerint in eiſdem parallelis conſtituta.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13473
"
xml:space
="
preserve
">Solidum rectangolum ſub eiſdem contentum, regula
<
lb
/>
altera dictarum parallelarum, ac alia quadam illi in ſubli-
<
lb
/>
mi perpendiculari, erit pyramis, habens in baſi parallelo-
<
lb
/>
grammum rectangulum, ſub dictorum triangulorum baſi-
<
lb
/>
bus contentum, dummodo alterum dictorum triangulorũ
<
lb
/>
ſit in ambitu contentiſolidi.</
s
>
<
s
xml:id
="
echoid-s13474
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s13475
"
xml:space
="
preserve
">Sint duo triangula in eiſdem parallelis conſtituta, LK, ND, nẽ
<
lb
/>
pè, ABC, ACD, in baſibus, BC, CD, in parallela, ND, diſpoſitis,
<
lb
/>
eleuetur autem à puncto, C, quædam, CF, perpendicularis ipſi, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>