Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
541
(521)
542
(522)
543
(523)
544
(524)
545
(525)
546
(526)
547
(527)
548
(528)
549
(529)
550
(530)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(523)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1202
"
type
="
section
"
level
="
1
"
n
="
720
">
<
pb
o
="
523
"
file
="
0543
"
n
="
543
"
rhead
="
LIBER VII.
"/>
</
div
>
<
div
xml:id
="
echoid-div1203
"
type
="
section
"
level
="
1
"
n
="
721
">
<
head
xml:id
="
echoid-head754
"
xml:space
="
preserve
">COROLLARIVM II.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s13491
"
xml:space
="
preserve
">SImiliter ſi compleautur parallelogramma, PC, CR, CO, ſolidum
<
lb
/>
rectangulum ſub, RC, CP, ſeu ſub, OC, CP, contentum, quod eſt
<
lb
/>
parallelepipedum, triplum erit contenti ſub triangulis prædictis ideſt
<
lb
/>
pyramidis, AEC. </
s
>
<
s
xml:id
="
echoid-s13492
"
xml:space
="
preserve
">Contentum verò ſub parallelogrammis, TC, &</
s
>
<
s
xml:id
="
echoid-s13493
"
xml:space
="
preserve
">, C
<
lb
/>
X, ad contentum ſub dictis trapezijs hoc eſt ad fruſtum pyramidis, GE
<
lb
/>
CI, erit vt quadratum, BC, rectangulum ſub, XI, IM, vna cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s13494
"
xml:space
="
preserve
">qua.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13495
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-0543-01
"
xlink:href
="
note-0543-01a
"
xml:space
="
preserve
">_10.huius._</
note
>
drat. </
s
>
<
s
xml:id
="
echoid-s13496
"
xml:space
="
preserve
">XM, retentis ſemper ijſdem reg. </
s
>
<
s
xml:id
="
echoid-s13497
"
xml:space
="
preserve
">BC, CF. </
s
>
<
s
xml:id
="
echoid-s13498
"
xml:space
="
preserve
">Hæc autem V
<
unsure
/>
era ſunt
<
lb
/>
ſiue latus, AC, ſit commune præfatis triangulis, ſeu parallelogram -
<
lb
/>
mis, ſiue non, ac ſine latus, IC, ſit cõmune predictis trapezijs, ſeu paral
<
lb
/>
lelogrammis, ſiue nõvt facilè intuenti innoteſcet.</
s
>
<
s
xml:id
="
echoid-s13499
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1205
"
type
="
section
"
level
="
1
"
n
="
722
">
<
head
xml:id
="
echoid-head755
"
xml:space
="
preserve
">COROLLARIVM III.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s13500
"
xml:space
="
preserve
">_P_Atet vltimo ſolida rectangula ſub dictis triangulis, regulis iam
<
lb
/>
dictis, contenta, ſe babereinter ſe, vt ipſæ pyramides, nempè
<
lb
/>
æquè alta eſſe in pro portione baſium, & </
s
>
<
s
xml:id
="
echoid-s13501
"
xml:space
="
preserve
">in eadem, vel æqualiqus ba-
<
lb
/>
ſibus exiſtentia eſſe in proportione altitudinem reſpectu baſium aſſum-
<
lb
/>
ptarum, quod eſt ſimile illi, quod animaduerſum eſt in Cor. </
s
>
<
s
xml:id
="
echoid-s13502
"
xml:space
="
preserve
">I. </
s
>
<
s
xml:id
="
echoid-s13503
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s13504
"
xml:space
="
preserve
">2,
<
lb
/>
prop. </
s
>
<
s
xml:id
="
echoid-s13505
"
xml:space
="
preserve
">ant. </
s
>
<
s
xml:id
="
echoid-s13506
"
xml:space
="
preserve
">circa parallelogramma ſolida rectangula continentia.</
s
>
<
s
xml:id
="
echoid-s13507
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1206
"
type
="
section
"
level
="
1
"
n
="
723
">
<
head
xml:id
="
echoid-head756
"
xml:space
="
preserve
">ANNOTATIO.</
head
>
<
p
>
<
s
xml:id
="
echoid-s13508
"
xml:space
="
preserve
">ADuerte autem cum ſolidum rectangulum fuerit quadratum,
<
lb
/>
tunc vnam ſufficere exponi figuram, vt ex. </
s
>
<
s
xml:id
="
echoid-s13509
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s13510
"
xml:space
="
preserve
">triangulum, A
<
lb
/>
BC, quod tunc æquipollet duobus expoſitis, ABC, ACD; </
s
>
<
s
xml:id
="
echoid-s13511
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s13512
"
xml:space
="
preserve
">con-
<
lb
/>
tentum ſolidum ſub, ABC, ACD, tunc etiam dicimus quadratum
<
lb
/>
ſolidum ipſius, ABC, regulis, BC, CF, hæc autem planarum figu-
<
lb
/>
rarum quadrata ſolida mentaliter quoque vt plurimum deſcripta
<
lb
/>
eſſe intelligemus, vt etiam ſuperius animaduerſum fuit. </
s
>
<
s
xml:id
="
echoid-s13513
"
xml:space
="
preserve
">His au-
<
lb
/>
tem præpoſitis, nunc illa ſubiungemus, quæ aſſimilantur Prop.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13514
"
xml:space
="
preserve
">Sec. </
s
>
<
s
xml:id
="
echoid-s13515
"
xml:space
="
preserve
">Elem. </
s
>
<
s
xml:id
="
echoid-s13516
"
xml:space
="
preserve
">ac iuxta methodum indiuiſibilium lib. </
s
>
<
s
xml:id
="
echoid-s13517
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s13518
"
xml:space
="
preserve
">prop. </
s
>
<
s
xml:id
="
echoid-s13519
"
xml:space
="
preserve
">23. </
s
>
<
s
xml:id
="
echoid-s13520
"
xml:space
="
preserve
">oſtẽ-
<
lb
/>
ſa fuere.</
s
>
<
s
xml:id
="
echoid-s13521
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1207
"
type
="
section
"
level
="
1
"
n
="
724
">
<
head
xml:id
="
echoid-head757
"
xml:space
="
preserve
">THEOREMA XV. PROPOS. XV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s13522
"
xml:space
="
preserve
">SI duæ expoſitæ fuerint ſuperficies ſolidum rectangulũ
<
lb
/>
iuxta datas regulas continentes, altera autem earum
<
lb
/>
fuerit in quotcunq; </
s
>
<
s
xml:id
="
echoid-s13523
"
xml:space
="
preserve
">partes diuiſa per lineas ſecantes quaſ-
<
lb
/>
cunq; </
s
>
<
s
xml:id
="
echoid-s13524
"
xml:space
="
preserve
">ſuæ regulæ intra dictam ſuperficiem parallelas, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>