Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
541
(521)
542
(522)
543
(523)
544
(524)
545
(525)
546
(526)
547
(527)
548
(528)
549
(529)
550
(530)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(524)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1207
"
type
="
section
"
level
="
1
"
n
="
724
">
<
p
>
<
s
xml:id
="
echoid-s13524
"
xml:space
="
preserve
">
<
pb
o
="
524
"
file
="
0544
"
n
="
544
"
rhead
="
GEOMETRIE
"/>
ra autem fuerit indiuiſa: </
s
>
<
s
xml:id
="
echoid-s13525
"
xml:space
="
preserve
">Solidum rectangulum ſub indi-
<
lb
/>
uiſa, & </
s
>
<
s
xml:id
="
echoid-s13526
"
xml:space
="
preserve
">ſub diuiſa contentum, æquabitur ſolidis rectangu-
<
lb
/>
lis ſub eadem indiuiſa, & </
s
>
<
s
xml:id
="
echoid-s13527
"
xml:space
="
preserve
">ſub partibus diuiſæ, regulis ijſ-
<
lb
/>
dem, contentis.</
s
>
<
s
xml:id
="
echoid-s13528
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s13529
"
xml:space
="
preserve
">Sint duæ expoſitæ ſuperficies, AC, CH, ſolidum recrangulum,
<
lb
/>
FC, iuxca regulas, kC, CB, continentes, earum autem altera, vt,
<
lb
/>
AC, ſit diuila in quotcumq; </
s
>
<
s
xml:id
="
echoid-s13530
"
xml:space
="
preserve
">partes, vt per lineam, DEC, ſecan-
<
lb
/>
tem quaſcumq; </
s
>
<
s
xml:id
="
echoid-s13531
"
xml:space
="
preserve
">intra ſuperficiem, AC, ipſiregulæ, BC, parallelas,
<
lb
/>
<
figure
xlink:label
="
fig-0544-01
"
xlink:href
="
fig-0544-01a
"
number
="
357
">
<
image
file
="
0544-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0544-01
"/>
</
figure
>
in duas partes, DEC, ADECB, ipſa
<
lb
/>
verò, HC, ſit indiuiſa. </
s
>
<
s
xml:id
="
echoid-s13532
"
xml:space
="
preserve
">Dico ſolidum
<
lb
/>
contentum ſub indiuiſa, HC, & </
s
>
<
s
xml:id
="
echoid-s13533
"
xml:space
="
preserve
">ſub
<
lb
/>
diuiſa, AC, ideſt, FC, æquari ſolidis
<
lb
/>
contentis ſub, DEC, CH, & </
s
>
<
s
xml:id
="
echoid-s13534
"
xml:space
="
preserve
">ſub, DE
<
lb
/>
CBA, & </
s
>
<
s
xml:id
="
echoid-s13535
"
xml:space
="
preserve
">ſub eadem, CH. </
s
>
<
s
xml:id
="
echoid-s13536
"
xml:space
="
preserve
">Intelliga-
<
lb
/>
tur ergo quandam rectam lineam fer-
<
lb
/>
ri peripſam, CED, indefinitè produ
<
lb
/>
ctam, donec totam percurrerit, ac
<
lb
/>
ſemper moueri ipſi regulæ, KC, æqui-
<
lb
/>
diſtanter, deſcribet ergo ſuperficiem
<
lb
/>
cylindraceam, quæ ſit, KEH, & </
s
>
<
s
xml:id
="
echoid-s13537
"
xml:space
="
preserve
">ab-
<
lb
/>
ſcindet à ſuperſiciebus, FK, AC, ſu-
<
lb
/>
perficies cylindraceas, HIK, DEC, &</
s
>
<
s
xml:id
="
echoid-s13538
"
xml:space
="
preserve
">, HC, eſt cylindracea, & </
s
>
<
s
xml:id
="
echoid-s13539
"
xml:space
="
preserve
">hoc
<
lb
/>
ſiue ſit in ambitu contenti ſolidi, ſiue non, alioquin non poſſent
<
lb
/>
latera, quæ per ſolidum, FC, ſecantia plana, ipſi, GC, æquidiſtã-
<
lb
/>
tia ſignantur in ipſa ſuperficie, HC, omnia vni regulæ, kC, æqui-
<
lb
/>
diſtare, ergo ſolidum, HIKCED, ſuperficiebus cylindraceis com-
<
lb
/>
prehenditur, quarum regulæ ſunt, kC, CB, inuicem perpendicula-
<
lb
/>
res ergo ſi ſolidum, HIKCED, ſecetur planis ipſi, kB, parallelis fiẽt
<
lb
/>
in ſolido parallelogramina ipſi, kB, æquiangula, hoc eſt rectangu-
<
lb
/>
la, & </
s
>
<
s
xml:id
="
echoid-s13540
"
xml:space
="
preserve
">ideò dictum ſolidum erit ſolidum rectangulum contentum
<
lb
/>
ſub, HC, CED, ſuperficiebus: </
s
>
<
s
xml:id
="
echoid-s13541
"
xml:space
="
preserve
">Eodem modo oſtendemus, HIKC
<
lb
/>
EDAG, eſſe ſolidum rectangulum contentum ſub ſuperficie, DIC,
<
lb
/>
hoe eſt, Dk, il i homologa iuxta planum, BK, ac ſub, DECBA, eſt
<
lb
/>
autem ſolidum, FC, æquale duobus ſolidis, HIC, CIHFB, ſimul
<
lb
/>
ſumptis, ergo ſolidum rectangulum contentum ſub indiuiſa ſuperö
<
lb
/>
ficie, HC, & </
s
>
<
s
xml:id
="
echoid-s13542
"
xml:space
="
preserve
">ſub diuiſa, AC, æquale eſt ſolidis rectangulis conten-
<
lb
/>
tis ſub eadem indiuiſa, HC, & </
s
>
<
s
xml:id
="
echoid-s13543
"
xml:space
="
preserve
">ſub partibus diuiſæ, DEC, DECB
<
lb
/>
A, regulis ſemper ijſdem, BC, CK, retentis, quod oſtendere opus
<
lb
/>
erat.</
s
>
<
s
xml:id
="
echoid-s13544
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>