Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
51
52
53
54
55
56
57
58
59
60
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000408
">
<
pb
pagenum
="
18
"
xlink:href
="
028/01/058.jpg
"/>
<
emph
type
="
italics
"/>
vera, & neceſſaria ſit; in motu tamen accelerato minime
<
lb
/>
neceſſaria eſt, & non vno modo tantum, ſed pluribus in
<
lb
/>
telligi potest, quo modo velocitates ſint inter ſe, vt emenſa
<
lb
/>
ſpatia: licet eadem ſpatia neque eodem, neque æquali tem
<
lb
/>
pore percurrantur.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.000409
"> Pergis autem,
<
emph
type
="
italics
"/>
Vt, ſi graue deſcen-
<
emph.end
type
="
italics
"/>
<
lb
/>
<
emph
type
="
italics
"/>
dens per AB tempus quodcumque inſumat, putà qua
<
lb
/>
<
figure
id
="
id.028.01.058.1.jpg
"
xlink:href
="
028/01/058/1.jpg
"
number
="
11
"/>
<
lb
/>
drantem; ac deinde BC ipſi AB æquale, dimidio
<
lb
/>
quadrante percurrat; quis neget in
<
emph.end
type
="
italics
"/>
C
<
emph
type
="
italics
"/>
duplam ha
<
lb
/>
beri velocitatem eius, quæ fuit in B? & tamen
<
lb
/>
idem graue totam AC, & dimidium eius AB
<
lb
/>
non percurreret.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.000410
"> Et hæc eſt quidem tota tua ad
<
lb
/>
conuincendum paralogiſmi Galileum proba
<
lb
/>
tio, ob quam continenter hæc verba ſubiun
<
lb
/>
gis:
<
emph
type
="
italics
"/>
Aſſumptio igitur Galilei falſa eſt, & tota eius
<
lb
/>
ratiocinatio merus Paralogiſmus id óque nullo modo, vt ipſe
<
lb
/>
gloriatur communem, ſanioremque aliorum ſenſum erroris
<
lb
/>
reuincit, qui in naturali grauium deſcenſu volunt æqualibus
<
lb
/>
spatijs æqualia velocitatis momenta acquiri.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.000411
"> An verò pa
<
lb
/>
tietur tua bonitas, ſi dicam poſſe cuipiam videri, eſſe
<
lb
/>
te potiùs, qui hoc loco incidas in paralogiſmum? </
s
>
<
s
id
="
s.000412
">Ni
<
lb
/>
mirum videris ſic argumentari, vt id, quod contro
<
lb
/>
uertitur, aſſumas pro principio, dum nihil aliud, quàm
<
lb
/>
ſupponis ſpatium AB, percurri duplo temporis, quo
<
lb
/>
ſpatium BC; & velocitatem in C, eſſe duplam eius,
<
lb
/>
quæ fuit in B; quæ ipſa tamen eſt controuerſia. </
s
>
<
s
id
="
s.000413
">Et
<
lb
/>
cùm ſoluenda eſſet ratio, qua conficitur fore, vt AC
<
lb
/>
percurratur eodem, aut æquali tempore, quo ſpatium
<
lb
/>
AB, nihil aliud, quam concluſionem negas, fore di
<
lb
/>
cendo, vt idem graue totam AC, & dimidium eius
<
lb
/>
AB eodem tempore non percurreret. </
s
>
<
s
id
="
s.000414
">Teneri certè </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>