Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
51
52
53
54
55
56
57
58
59
60
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000421
">
<
pb
pagenum
="
20
"
xlink:href
="
028/01/060.jpg
"/>
duplum temporis, quo percurritur CD, & hoc
<
lb
/>
<
figure
id
="
id.028.01.060.1.jpg
"
xlink:href
="
028/01/060/1.jpg
"
number
="
12
"/>
<
lb
/>
duplum eius, quo DE, & iſtud illius, quo EF,
<
lb
/>
& ſic deinceps; neque enim maior vnius,
<
lb
/>
quàm alterius eſt ratio; ac in accelerato potiſ
<
lb
/>
ſimù n æquabiliter motu, de quo præſertim
<
lb
/>
quæſtio heic eſt. </
s
>
<
s
id
="
s.000422
">Quare & velis etiam opor
<
lb
/>
tet, vt cùm tempus, quo percurritur BC, ſit
<
lb
/>
dimidium temporis, quo percurritur AB; illud,
<
lb
/>
quo percurritur CD, ſit quadrans eiuſdem
<
lb
/>
primi temporis; illud, quo DE, octans; quo
<
lb
/>
EF, pars decima ſexta; quo FG, trigeſima ſe
<
lb
/>
cunda; quo GH ſexageſima quarta, &c. </
s
>
<
s
id
="
s.000423
">Por
<
lb
/>
rò hæc omnia tempora ſimul iuncta nunquam
<
lb
/>
æquabuntur primo tempori, quo decurſum
<
lb
/>
fuerit AB (quandò procedentes hoc modo
<
lb
/>
fractiones relinquunt ſemper ex integro, to
<
lb
/>
tove quidpiam inexhauſtum) niſi lineam, ſeu
<
lb
/>
ſpatium infinitum admiſeris, & parteis æqua
<
lb
/>
leis in eo infinitas, quæ infinitis analogis (ſeu
<
lb
/>
dimidiorum dimidiis in tempore ipſo, aut
<
lb
/>
æquali, quo AB percurritur) contineri intel
<
lb
/>
lectis, reſpondeant. </
s
>
<
s
id
="
s.000424
">Adderem heic etiam
<
lb
/>
incommodum aliud de ſpatijs increſcentibus,
<
lb
/>
& in fine cuiuſlibet æqualis temporis numerandis
<
lb
/>
ſecundum rationem non modò duplam, verùm etiam
<
lb
/>
triplam, & ampliùs: ſed res erit poſteà vberiùs dicen
<
lb
/>
da. </
s
>
<
s
id
="
s.000425
">Adderem rursùs alia quoque, vt Quòd ſequere
<
lb
/>
tur lineam proiectorum, & illam ſpeciatim, quæ deſ
<
lb
/>
cribitur à lapide ſurſum, & ſecundum mali altitudi
<
lb
/>
nem, dum nauis mouetur, proiecto, non eſſe Parabo-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>