Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
51
(31)
52
(32)
53
(33)
54
(34)
55
(35)
56
(36)
57
(37)
58
(38)
59
(39)
60
(40)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(40)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div127
"
type
="
section
"
level
="
1
"
n
="
88
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1062
"
xml:space
="
preserve
">
<
pb
o
="
40
"
file
="
0060
"
n
="
60
"
rhead
="
GEOMETRIÆ
"/>
ſeuntis, vt ipſius, BDFO, quod ſemper eſt trapezium, & </
s
>
<
s
xml:id
="
echoid-s1063
"
xml:space
="
preserve
">ipſarum, V
<
lb
/>
BO, TDF, ſiue eiſdem æquidiſtantium inter eaſdem ductarum, eſſe ea-
<
lb
/>
rundem lineas, vel latera homologa, vnde patet communes ſectiones
<
lb
/>
planiper latera fruſti conici ducti, & </
s
>
<
s
xml:id
="
echoid-s1064
"
xml:space
="
preserve
">eiuſdem baſium oppoſitarum, ſiue
<
lb
/>
eiſdem æquidiſtantium inter eas productarum figurarum, eſſe earundem
<
lb
/>
lineas, vel latera homologa; </
s
>
<
s
xml:id
="
echoid-s1065
"
xml:space
="
preserve
">lineas, inquam, cum ſunt intra figuras,
<
lb
/>
nec ſumuntur in plano tangente: </
s
>
<
s
xml:id
="
echoid-s1066
"
xml:space
="
preserve
">latera, cum ſunt in earum circuitu,
<
lb
/>
cum nempè ſunt in eodem plano tangente, in eo præcisè, quod eſt pla-
<
lb
/>
num contactus fruſti conici (contactus ſcilicet cius plani, quod per ver-
<
lb
/>
ticem ducitur) quod ſemper erit trapezium, vel trapezia, vt patere po-
<
lb
/>
teſt in trapezijs, BDCR, IEFO, quæ eſſent planum contactus fruſti
<
lb
/>
conici, ſiidem fruſtum tangeretur à plano trianguli, ADF.</
s
>
<
s
xml:id
="
echoid-s1067
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div128
"
type
="
section
"
level
="
1
"
n
="
89
">
<
head
xml:id
="
echoid-head100
"
xml:space
="
preserve
">THEOREMA XIX. PROPOS. XXII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1068
"
xml:space
="
preserve
">SI duæ figuræ planę ſimiles, non exiſtentes in eodem pla-
<
lb
/>
no, fuerint inæquales, & </
s
>
<
s
xml:id
="
echoid-s1069
"
xml:space
="
preserve
">ſimiliter poſitæ; </
s
>
<
s
xml:id
="
echoid-s1070
"
xml:space
="
preserve
">erunt cuiu-
<
lb
/>
ſdam fruſticonici oppoſitæ baſes.</
s
>
<
s
xml:id
="
echoid-s1071
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1072
"
xml:space
="
preserve
">Vtamuradhuc figura Propoſ. </
s
>
<
s
xml:id
="
echoid-s1073
"
xml:space
="
preserve
">19. </
s
>
<
s
xml:id
="
echoid-s1074
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1075
"
xml:space
="
preserve
">ſint duæ figuræ planæ quæ-
<
lb
/>
cumque ſimiles, inæquales, & </
s
>
<
s
xml:id
="
echoid-s1076
"
xml:space
="
preserve
">ſimiliter poſitę, non tamen exiſten-
<
lb
/>
tesin eodem plano, ipſæ, VBO, TDF. </
s
>
<
s
xml:id
="
echoid-s1077
"
xml:space
="
preserve
">Dico, quod erunt am-
<
lb
/>
bæ cuiuſdam fruſti conici oppoſitę baſes. </
s
>
<
s
xml:id
="
echoid-s1078
"
xml:space
="
preserve
">Quoniam ergo figure, V
<
lb
/>
BO, TDF, ſunt ſimiliter poſitæ, & </
s
>
<
s
xml:id
="
echoid-s1079
"
xml:space
="
preserve
">non in eodem plano, erunt in
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0060-01
"
xlink:href
="
note-0060-01a
"
xml:space
="
preserve
">D.Def.0.
<
lb
/>
huius.</
note
>
planis ęquidiſtantibus, & </
s
>
<
s
xml:id
="
echoid-s1080
"
xml:space
="
preserve
">quia ſunt ſimiles ſint earum incldentes, & </
s
>
<
s
xml:id
="
echoid-s1081
"
xml:space
="
preserve
">
<
lb
/>
oppoſitarum tangentium, quæ ſunt earundem homologarum regu-
<
lb
/>
læ, ipſæ, KN, HP; </
s
>
<
s
xml:id
="
echoid-s1082
"
xml:space
="
preserve
">KN, ipſius, VBO, &</
s
>
<
s
xml:id
="
echoid-s1083
"
xml:space
="
preserve
">, HP, ipſius, TDF,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s1084
"
xml:space
="
preserve
">prædictæ tangentes figuræ, VBO, ſint ipſæ, VK, XN, & </
s
>
<
s
xml:id
="
echoid-s1085
"
xml:space
="
preserve
">fi-
<
lb
/>
guræ, TDF, ipſæ, TH, SP, erunt ergo ipſæ, KN, HP, æqui-
<
lb
/>
diſtantes, & </
s
>
<
s
xml:id
="
echoid-s1086
"
xml:space
="
preserve
">quia ad tangentes, quæ ſunt regulæ homologarum, illę
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0060-02
"
xlink:href
="
note-0060-02a
"
xml:space
="
preserve
">Conuerla
<
lb
/>
10. Vnde-
<
lb
/>
cimi El</
note
>
efficiunt ad eandem partem angulos æquales, erit angulus, KNX,
<
lb
/>
æqualis angulo, HPS, & </
s
>
<
s
xml:id
="
echoid-s1087
"
xml:space
="
preserve
">quia, KN, eſt parallela ipſi, HP, erit
<
lb
/>
etiam, XN, parallela ipſi, SP. </
s
>
<
s
xml:id
="
echoid-s1088
"
xml:space
="
preserve
">Eodem pacto oſtendemus, VK,
<
lb
/>
eſſe parallelam ipſi, TH; </
s
>
<
s
xml:id
="
echoid-s1089
"
xml:space
="
preserve
">ducantur in figuris, VBO, TDF, duæ
<
lb
/>
earum homologæ regulis dictis tang entibus, quæ ſint ipſæ, BR, I
<
lb
/>
O, DC, EF, ſint autem totæ, BO, DF, productæ, ſi opus ſit, vt
<
lb
/>
ſecent ipſas, KN, HP, quas diuident ſimiliter ad eandem partem,
<
lb
/>
vt in punctis, M, G, & </
s
>
<
s
xml:id
="
echoid-s1090
"
xml:space
="
preserve
">quia figuræ propoſitæ ſunt inæquales, ſit
<
lb
/>
maior ipſa, TDF, igitur etiam maior erit, DC, ipſa, BR, vel, E
<
lb
/>
F, ipſa, IO, ſi, n. </
s
>
<
s
xml:id
="
echoid-s1091
"
xml:space
="
preserve
">eſſent eiſdem æquales, etiam reliquæ homologæ
<
lb
/>
his parallelæ eſſent ęquales, cum omnes ſint proportionales (ſunt.</
s
>
<
s
xml:id
="
echoid-s1092
"
xml:space
="
preserve
">n.</
s
>
<
s
xml:id
="
echoid-s1093
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>