Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
61
62
63
64
65
66
67
68
69
70
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/069.jpg
"
pagenum
="
41
"/>
<
figure
id
="
id.039.01.069.1.jpg
"
xlink:href
="
039/01/069/1.jpg
"
number
="
14
"/>
<
p
type
="
main
">
<
s
>Nam perpendicula a centro
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
lb
/>
in tangentes
<
emph
type
="
italics
"/>
PT, QT
<
emph.end
type
="
italics
"/>
demiſſa (per
<
lb
/>
Corol. </
s
>
<
s
>1. Prop.I.) ſunt reciproce
<
lb
/>
ut velocitates corporis in punctis
<
lb
/>
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
V
<
emph.end
type
="
italics
"/>
; &c. </
s
>
<
s
>adeoque per conſtructio
<
lb
/>
nem ut perpendicula
<
emph
type
="
italics
"/>
AP, BQ
<
emph.end
type
="
italics
"/>
di
<
lb
/>
recte, id eſt ut perpendicula a pun
<
lb
/>
cto
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
in tangentes demiſſa. </
s
>
<
s
>Un
<
lb
/>
de facile colligitur quod puncta
<
lb
/>
<
emph
type
="
italics
"/>
S, D, T,
<
emph.end
type
="
italics
"/>
ſunt in una recta. </
s
>
<
s
>Et ſimili
<
lb
/>
argumento puncta
<
emph
type
="
italics
"/>
S, E, V
<
emph.end
type
="
italics
"/>
ſunt eti
<
lb
/>
am in una recta; & propterea centrum
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
in concurſu rectarum
<
emph
type
="
italics
"/>
TD, VE
<
emph.end
type
="
italics
"/>
<
lb
/>
verſatur.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO VI. THEOREMA V.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si corpus in ſpatio non reſiſtente circa centrum immobile in Orbe quocun
<
lb
/>
que revolvatur, & arcum quemvis jamjam naſcentem tempore quàm
<
lb
/>
minimo deſcribat, & ſagitta arcus duci intelligatur quæ chordam bi
<
lb
/>
ſecet, & producta tranſeat per centrum virium: erit vis centripeta
<
lb
/>
in medio arcus, ut ſagitta directe & tempus bis inverſe.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam ſagitta dato tempore eſt ut vis (per Corol.4 Prop.I,) & augen
<
lb
/>
do tempus in ratione quavis, ob auctum arcum in eadem ratione ſa
<
lb
/>
gitta augetur in ratione illa duplicata (per Corol. </
s
>
<
s
>2 & 3, Lem. </
s
>
<
s
>XI,) ad
<
lb
/>
eoque eſt ut vis ſemel & tempus bis. </
s
>
<
s
>Subducatur duplicata ratio tempo
<
lb
/>
ris utrinque, & fiet vis ut ſagitta directe & tempus bis inverſe.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Idem facile demonſtratur etiam per Corol. </
s
>
<
s
>4 Lem. </
s
>
<
s
>X. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Si corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
revolvendo
<
lb
/>
<
figure
id
="
id.039.01.069.2.jpg
"
xlink:href
="
039/01/069/2.jpg
"
number
="
15
"/>
<
lb
/>
circa centrum
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
deſcribat lineam
<
lb
/>
curvam
<
emph
type
="
italics
"/>
APQ,
<
emph.end
type
="
italics
"/>
tangat verò recta
<
lb
/>
<
emph
type
="
italics
"/>
ZPR
<
emph.end
type
="
italics
"/>
curvam illam in puncto
<
lb
/>
quovis
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
& ad tangentem ab alio
<
lb
/>
quovis Curvæ puncto
<
emph
type
="
italics
"/>
Q
<
emph.end
type
="
italics
"/>
agatur
<
lb
/>
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
diſtantiæ
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
parallela, ac
<
lb
/>
demittatur
<
emph
type
="
italics
"/>
QT
<
emph.end
type
="
italics
"/>
perpendicularis
<
lb
/>
ad diſtantiam illam
<
emph
type
="
italics
"/>
SP:
<
emph.end
type
="
italics
"/>
vis cen
<
lb
/>
tripeta erit reciproce ut ſolidum
<
lb
/>
(
<
emph
type
="
italics
"/>
SP quad.XQT quad./QR
<
emph.end
type
="
italics
"/>
) ſi modo ſolidi illius ea ſemper ſumatur quan
<
lb
/>
titas, quæ ultimò fit ubi coeunt puncta
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
<
emph.end
type
="
italics
"/>
Nam
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
æqualis </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>