Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
71
72
73
74
75
76
77
78
79
80
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/073.jpg
"
pagenum
="
45
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Et ſimili argumento corpus movebitur in Ellipſi vel etiam in
<
lb
/>
Hyperbola vel Parabola, vi centripeta quæ ſit reciproce ut cu
<
lb
/>
bus ordinatim applicatæ ad centrum virium maxime longinquum
<
lb
/>
tendentis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO IX. PROBLEMA IV.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Gyretur corpus in Spirali
<
emph.end
type
="
italics
"/>
PQS
<
emph
type
="
italics
"/>
ſecante radios omnes
<
emph.end
type
="
italics
"/>
SP, SQ,
<
emph
type
="
italics
"/>
&c.
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.073.1.jpg
"
xlink:href
="
039/01/073/1.jpg
"
number
="
19
"/>
<
lb
/>
<
emph
type
="
italics
"/>
in angulo dato: requiritur Lex
<
lb
/>
vis centripetæ tendentis ad
<
lb
/>
centrum Spiralis.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Detur angulus indefinite par
<
lb
/>
vus
<
emph
type
="
italics
"/>
PSQ,
<
emph.end
type
="
italics
"/>
& ob datos omnes
<
lb
/>
angulos dabitur ſpecie figura
<
emph
type
="
italics
"/>
SPQRT.
<
emph.end
type
="
italics
"/>
Ergo datur ratio (
<
emph
type
="
italics
"/>
QT/QR
<
emph.end
type
="
italics
"/>
), eſtque
<
lb
/>
(
<
emph
type
="
italics
"/>
QT quad./QR
<
emph.end
type
="
italics
"/>
) ut
<
emph
type
="
italics
"/>
QT,
<
emph.end
type
="
italics
"/>
hoc eſt ut
<
emph
type
="
italics
"/>
SP.
<
emph.end
type
="
italics
"/>
Mutetur jam uteunque angulus
<
emph
type
="
italics
"/>
PSQ,
<
emph.end
type
="
italics
"/>
<
lb
/>
& recta
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
angulum contactus
<
emph
type
="
italics
"/>
QPR
<
emph.end
type
="
italics
"/>
ſubtendens mutabitur (per
<
lb
/>
Lemma XI.) in duplicata ratione ipſius
<
emph
type
="
italics
"/>
PR
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
QT.
<
emph.end
type
="
italics
"/>
Ergo manebit
<
lb
/>
(
<
emph
type
="
italics
"/>
QT quad./QR
<
emph.end
type
="
italics
"/>
) eadem quæ prius, hoc eſt ut
<
emph
type
="
italics
"/>
SP.
<
emph.end
type
="
italics
"/>
Quare (
<
emph
type
="
italics
"/>
QTq.XSPq/QR
<
emph.end
type
="
italics
"/>
)
<
lb
/>
eſt ut
<
emph
type
="
italics
"/>
SP cub.
<
emph.end
type
="
italics
"/>
adeoque (per Corol. </
s
>
<
s
>1 & 5 Prop. </
s
>
<
s
>VI.) vis centripeta eſt
<
lb
/>
reciproce ut cubus diſtantiæ
<
emph
type
="
italics
"/>
SP.
<
expan
abbr
="
q.
">que</
expan
>
E. I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Idem aliter.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Perpendiculum
<
emph
type
="
italics
"/>
SY
<
emph.end
type
="
italics
"/>
in tangentem demiſſum, & circuli Spiralem
<
lb
/>
tangentis chorda
<
emph
type
="
italics
"/>
PV
<
emph.end
type
="
italics
"/>
ſunt ad altitudinem
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
in datis rationibus;
<
lb
/>
ideoque
<
emph
type
="
italics
"/>
SP cub.
<
emph.end
type
="
italics
"/>
eſt ut
<
emph
type
="
italics
"/>
SYqXPV,
<
emph.end
type
="
italics
"/>
hoc eſt (per Corol. </
s
>
<
s
>3 & 5 Prop.VI.)
<
lb
/>
reciproce ut vis centripeta. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA XII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Parallelogramma omnia, circa datæ Ellipſeos vel Hyperbolæ diametros
<
lb
/>
quaſvis conjugatas deſcripta, eſſe inter ſe æqualia.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Conſtat ex Conicis. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>