Cardano, Girolamo
,
De subtilitate
,
1663
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
71
72
73
74
75
76
77
78
79
80
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
page
|<
<
of 403
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.003091
">
<
pb
pagenum
="
425
"
xlink:href
="
016/01/074.jpg
"/>
tamen ad angulos æquales, vt à plano ſpe
<
lb
/>
culo non directè Soli expoſito: nam nec
<
lb
/>
hanc oculus ſuſtinet. </
s
>
<
s
id
="
s.003092
">Quarta reddit imagi
<
lb
/>
nem ſed ſuſtineri poteſt, cùm radij ad æqua
<
lb
/>
lem angulum reflectuntur, ſed ſparguntur
<
lb
/>
vt in cauis ſpeculis extra pyramidem vtram
<
lb
/>
que, & quæ à centro ſpeculi ad ſpeculum,
<
lb
/>
& à centro ſpeculi ad rem viſam: vt ex
<
lb
/>
tra pyramidem FKL, & FAC. </
s
>
<
s
id
="
s.003093
">Quinta eſt,
<
lb
/>
cùm à corpore non polito reflectuntur ra
<
lb
/>
dij, ad viſum inutiles: non ad calorem:
<
lb
/>
nam & hi perpendiculares ( vt dixi) reflexi
<
lb
/>
ingeminant caliditatem propter coitionem
<
lb
/>
ſed imaginem haud reddunt. </
s
>
<
s
id
="
s.003094
">Cauſæ autem
<
lb
/>
roboris radiorum per accidens dicuntur,
<
lb
/>
magnitudo & propinquitas lucidi, & quòd
<
lb
/>
radius ille ex centro lucidi proficiſcatur: tum
<
lb
/>
ſynceritas medij, & radiorum ipſorum. </
s
>
<
s
id
="
s.003095
">His
<
lb
/>
cauſis accidit, vt lumen aliud alio euadat
<
lb
/>
validius: vnde reflexionem ſolarium radio
<
lb
/>
rum ex Luna & ſyderibus ob diſtantiam
<
lb
/>
quanquam puriorem toleramus, à cryſtal
<
lb
/>
lo, & aqua oculis ferre non poſſumus. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.003096
">
<
margin.target
id
="
marg361
"/>
Cur ſpecula
<
lb
/>
caua, cum
<
lb
/>
vbique
<
expan
abbr
="
refle-ctãt
">refle
<
lb
/>
ctant</
expan
>
radios,
<
lb
/>
non tamen
<
lb
/>
vbique red
<
lb
/>
dunt imagi
<
lb
/>
nem.
<
lb
/>
</
s
>
<
s
id
="
s.003097
">Cauſæ robo
<
lb
/>
ris radio
<
lb
/>
rum per ſe,
<
lb
/>
& per acci
<
lb
/>
dens.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.003098
">Verùm cùm duo videantur eſſe modi ac
<
lb
/>
cendendi ignem ex ſpeculo: primus, vt om
<
lb
/>
nes radij in centrum ſpeculi incidentes col
<
lb
/>
ligantur in vno puncto per reflexionem,
<
lb
/>
qui fit ( vt dictum eſt ) cum cauo ſpeculo
<
lb
/>
ſphærico. </
s
>
<
s
id
="
s.003099
">Secundus eſt, vt omnes æquidi
<
lb
/>
ſtantes colligantur, qui è ſole prodeunt, in
<
lb
/>
punctum vnum, qui etiam fit parabole: ex
<
lb
/>
tare de hoc libros Archimedis, vbi docet
<
lb
/>
comburentia ſpecula parabole conſtare,
<
lb
/>
Franciſcum Maurolycum Meſſanenſem ſcri
<
lb
/>
pſiſſe, apud Conradum Geſnerum inuenio.
<
lb
/>
</
s
>
<
s
id
="
s.003100
">Res autem ſic ſe habet. </
s
>
<
s
id
="
s.003101
">Cùm ſuperficies
<
lb
/>
conum rectum ſecat, & ſuperficiei deme
<
lb
/>
tiens æquidiſtat lateri trigoni inſcripti ſu
<
lb
/>
perficiei conum per axem ex vertice ſecantis
<
lb
/>
ſuperficies illa parabole dicitur, quæ ſit
<
lb
/>
A B C. </
s
>
<
s
id
="
s.003102
">Cuius rectà à vertice B diuidens
<
lb
/>
AC rectam ſubiectam æquis lateribus, cur
<
lb
/>
uis BA & BC, vocetur
<
expan
abbr
="
dimetiẽs
">dimetiens</
expan
>
BD. AC au
<
lb
/>
tem diameter, baſis coni K, medium B D:
<
lb
/>
dico HKL talem ſemper habere portionem
<
lb
/>
<
figure
id
="
id.016.01.074.1.jpg
"
xlink:href
="
016/01/074/1.jpg
"
number
="
47
"/>
<
lb
/>
ad perpendicularem quamcunque ex latere
<
lb
/>
ſuper dimetiens venientem, qualis eſt ip
<
lb
/>
ſius perpendicularis ad partem dimetientis
<
lb
/>
inter verticem, & perpendicularem inter
<
lb
/>
ceptam. </
s
>
<
s
id
="
s.003103
">Velut ſit perpendicularis F G, ta
<
lb
/>
lem habebit igitur H L proportionem ad
<
lb
/>
GF qualis FG ad GF, & vocabitur tunc HL
<
lb
/>
latus rectum, & omnes æquidiſtantes BD,
<
lb
/>
ſeu radij reflectentur in K. </
s
>
<
s
id
="
s.003104
">Eſt verò HL ſem
<
lb
/>
per quadrupla BK.
<
lb
/>
<
arrow.to.target
n
="
marg362
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.003105
">
<
margin.target
id
="
marg362
"/>
De ſpeculo,
<
lb
/>
quod combu
<
lb
/>
rit naues
<
lb
/>
procul ve
<
lb
/>
nientes 3.de
<
lb
/>
emperamen
<
lb
/>
tis, cap.3.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.003106
">Sed ſi propoſitum ſit facere ſpeculum,
<
lb
/>
quod procul comburat, qualem feciſſe Ga
<
lb
/>
lenus narrat Archimedem, qui hoſtium
<
lb
/>
triremes deuſſerit: manifeſtum eſt ſpecula
<
lb
/>
ſeu à parabole ſumpta fuerint, ſeu à circu
<
lb
/>
lo ac ſphæra, maxima eſſe oportere, id
<
lb
/>
eſt, proportiones maximarum ſphærarum,
<
lb
/>
aut conorum maximorum, parabolis par
<
lb
/>
tem non tamen maximam. </
s
>
<
s
id
="
s.003107
">Velut ſi ad mil
<
lb
/>
le paſſus extendere ignem libeat, circulum
<
lb
/>
deſcribemus, cuius dimetiens ſit duo millia
<
lb
/>
paſſuum, huius tantam aſſumemus portio
<
lb
/>
nem, vt rotunditas non lateat, partem ſci
<
lb
/>
licet ſexageſimam, cui dimetientem pro al
<
lb
/>
titudine in termino vno adiiciemus, & di
<
lb
/>
metiente fixo circumagemus circuli par
<
lb
/>
tem, quæ nobis portionem ſphæræ deſcri
<
lb
/>
bet: quam cùm expoliuerimus, ignem Soli
<
lb
/>
expoſita procul & validiſſimum ad paſſus
<
lb
/>
M. accendet, Nunc autem non adeò vtilis, ob
<
lb
/>
<
figure
id
="
id.016.01.074.2.jpg
"
xlink:href
="
016/01/074/2.jpg
"
number
="
48
"/>
<
lb
/>
<
figure
id
="
id.016.01.074.3.jpg
"
xlink:href
="
016/01/074/3.jpg
"
number
="
49
"/>
<
lb
/>
bellicas machinas: olim verò tutiſſima. </
s
>
<
s
id
="
s.003108
">Quæ
<
lb
/>
verò à parabole procedit, conflagratio
<
lb
/>
potentior eſt. </
s
>
<
s
id
="
s.003109
">Ea autem ſic fit. </
s
>
<
s
id
="
s.003110
">Sit locus
<
lb
/>
qui comburi debet mille paſſibus diſtans.
<
lb
/>
</
s
>
<
s
id
="
s.003111
">Facio B K paſſuum mille, cui rectam co
<
lb
/>
æqualem adiicio K D, ipſi autem B D
<
lb
/>
æqualem ad perpendiculum facio A B, &
<
lb
/>
ex altera parte B C æqualem B A, & du
<
lb
/>
ctis D A & D C, facio D centrum ba
<
lb
/>
ſis coni, & A D axem, nam angulus ADC
<
lb
/>
rectus eſt, & circumuoluo AC, vt fiat co
<
lb
/>
nus, & deſcribetur circulus à linea D C
<
lb
/>
tanquam ſemidiametro pro coni baſi, hunc
<
lb
/>
diuido duabus diametris ad rectos angu
<
lb
/>
los ſe ſecantibus C E & F G in centro D.
<
lb
/>
</
s
>
<
s
id
="
s.003112
">Erit etiam vt B punctus circumferentiam
<
lb
/>
circuli deſcribat circa conum quæ ſit H B.
<
lb
/>
</
s
>
<
s
id
="
s.003113
">Duco igitur à vertice coni rectam ad ex
<
lb
/>
tremitatem vnius diametri baſis, puta ad
<
lb
/>
C, & vbi ſecat circuli peripheriam, vt
<
lb
/>
in B, ex illo puncto duco lineas rectas
<
lb
/>
ad extremitates alterius diametri B F, &
<
lb
/>
B C: ſuperficies igitur in qua eſt tri
<
lb
/>
gonus B F C, vbi ſecat ſuperficiem co
<
lb
/>
ni, facit duas obliquas lineas B F & B G,
<
lb
/>
quas ex chalybe optimo, ne flectantur, fieri
<
lb
/>
oportet, aſſumpta tantùm parte, puta BL &
<
lb
/>
BM æqualibus quæ ſunt latera paraboles.
<
lb
/>
</
s
>
<
s
id
="
s.003114
">Inde aſſumes molem ex gypſo N maiorem </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>