Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
71
72
73
74
75
76
77
78
79
80
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/079.jpg
"
pagenum
="
51
"/>
<
arrow.to.target
n
="
note27
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note26
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note27
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Idem aliter.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Inveniatur vis quæ tendit ab Hyperbolæ centro
<
emph
type
="
italics
"/>
C.
<
emph.end
type
="
italics
"/>
Prodibit hæc
<
lb
/>
diſtantiæ
<
emph
type
="
italics
"/>
CP
<
emph.end
type
="
italics
"/>
proportionalis. </
s
>
<
s
>Inde vero (per Corol. </
s
>
<
s
>3 Prop. </
s
>
<
s
>VII.)
<
lb
/>
vis ad umbilicum
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
tendens erit ut (
<
emph
type
="
italics
"/>
PEcub/SPq
<
emph.end
type
="
italics
"/>
), hoc eſt, ob datam
<
emph
type
="
italics
"/>
PE,
<
emph.end
type
="
italics
"/>
<
lb
/>
reciproce ut
<
emph
type
="
italics
"/>
<
expan
abbr
="
SPq.
">SPque</
expan
>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Eodem modo demonſtratur quod corpus, hac vi centripeta in
<
lb
/>
centrifugam verſa, movebitur in Hyperbola conjugata. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA XIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Latus rectum Parabolæ ad verticem quemvis pertinens, eſt quadru
<
lb
/>
plum diſtantiæ verticis illius ab umbilico figuræ.
<
emph.end
type
="
italics
"/>
Patet ex Conicis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
LEMMA XIV.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Perpendiculum quod ab umbilico Parabolæ ad tangentem ejus demitti
<
lb
/>
tur, medium eſt proportionale inter diſtantias umbilici a puncto con
<
lb
/>
tactus & a vertice principali figuræ.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sit enim
<
emph
type
="
italics
"/>
AQP
<
emph.end
type
="
italics
"/>
Parabola,
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
umbilicus ejus,
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
vertex principa
<
lb
/>
lis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
punctum
<
lb
/>
<
figure
id
="
id.039.01.079.1.jpg
"
xlink:href
="
039/01/079/1.jpg
"
number
="
23
"/>
<
lb
/>
contactus,
<
emph
type
="
italics
"/>
PO
<
emph.end
type
="
italics
"/>
<
lb
/>
ordinatim ap
<
lb
/>
plicata ad dia
<
lb
/>
metrum prin
<
lb
/>
cipalem,
<
emph
type
="
italics
"/>
PM
<
emph.end
type
="
italics
"/>
<
lb
/>
tangens dia
<
lb
/>
metro princi
<
lb
/>
pali occurrens
<
lb
/>
in
<
emph
type
="
italics
"/>
M,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SN,
<
emph.end
type
="
italics
"/>
<
lb
/>
linea perpen
<
lb
/>
dicularis ab umbilico in tangentem. </
s
>
<
s
>Jungatur
<
emph
type
="
italics
"/>
AN,
<
emph.end
type
="
italics
"/>
& ob æquales
<
lb
/>
<
emph
type
="
italics
"/>
MS
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SP, MN
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NP, MA
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AO,
<
emph.end
type
="
italics
"/>
parallelæ erunt rectæ
<
lb
/>
<
emph
type
="
italics
"/>
AN
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
OP,
<
emph.end
type
="
italics
"/>
& inde triangulum
<
emph
type
="
italics
"/>
SAN
<
emph.end
type
="
italics
"/>
rectangulum erit ad
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
&
<
lb
/>
ſimile triangulis æqualibus
<
emph
type
="
italics
"/>
SNM, SNP:
<
emph.end
type
="
italics
"/>
Ergo
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
eſt ad
<
emph
type
="
italics
"/>
SN,
<
emph.end
type
="
italics
"/>
<
lb
/>
ut
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SA. Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1.
<
emph
type
="
italics
"/>
<
expan
abbr
="
PSq.
">PSque</
expan
>
<
emph.end
type
="
italics
"/>
eſt ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
SNq.
">SNque</
expan
>
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SA.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Et ob datam
<
emph
type
="
italics
"/>
SA,
<
emph.end
type
="
italics
"/>
eſt
<
emph
type
="
italics
"/>
<
expan
abbr
="
SNq.
">SNque</
expan
>
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
PS.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>