Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
71
72
73
74
75
76
77
78
79
80
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/080.jpg
"
pagenum
="
52
"/>
<
arrow.to.target
n
="
note28
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note28
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Et concurſus tangentis cujuſvis
<
emph
type
="
italics
"/>
PM
<
emph.end
type
="
italics
"/>
cum recta
<
emph
type
="
italics
"/>
SN,
<
emph.end
type
="
italics
"/>
<
lb
/>
quæ ab umbilico in ipſam perpendicularis eſt, incidit in rectam
<
emph
type
="
italics
"/>
AN,
<
emph.end
type
="
italics
"/>
<
lb
/>
quæ Parabolam tangit in vertice principali. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO. XIII. PROBLEMA VIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Moveatur corpus in perimetro Parabolæ: requiritur Lex vis centri
<
lb
/>
petæ tendentis ad umbilicum hujus figuræ.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Maneat conſtructio Lemmatis, ſitque
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
corpus in perimetro Pa
<
lb
/>
rabolæ, & a loco
<
emph
type
="
italics
"/>
Q
<
emph.end
type
="
italics
"/>
in quem corpus proxime movetur, age ipſi
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
<
lb
/>
parallelam
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
& perpendicularem
<
emph
type
="
italics
"/>
QT,
<
emph.end
type
="
italics
"/>
necnon
<
emph
type
="
italics
"/>
Qv
<
emph.end
type
="
italics
"/>
tangenti pa
<
lb
/>
rallelam & occurrentem tum diametro
<
emph
type
="
italics
"/>
YPG
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
v,
<
emph.end
type
="
italics
"/>
tum diſtantiæ
<
lb
/>
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
x.
<
emph.end
type
="
italics
"/>
Jam ob ſimilia triangula
<
emph
type
="
italics
"/>
Pxv, SPM
<
emph.end
type
="
italics
"/>
& æqualia unius
<
lb
/>
latera
<
emph
type
="
italics
"/>
SM, SP,
<
emph.end
type
="
italics
"/>
æqualia ſunt alterius latera
<
emph
type
="
italics
"/>
Px
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Pv.
<
emph.end
type
="
italics
"/>
<
lb
/>
Sed, ex Conicis, quadratum ordinatæ
<
emph
type
="
italics
"/>
Qv
<
emph.end
type
="
italics
"/>
æquale eſt rectangulo ſub
<
lb
/>
latere recto & ſegmento diametri
<
emph
type
="
italics
"/>
Pv,
<
emph.end
type
="
italics
"/>
id eſt (per Lem. </
s
>
<
s
>XIII.) rectangu
<
lb
/>
lo 4
<
emph
type
="
italics
"/>
PSXPv,
<
emph.end
type
="
italics
"/>
ſeu 4
<
emph
type
="
italics
"/>
PSXQR
<
emph.end
type
="
italics
"/>
; & punctis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Q
<
emph.end
type
="
italics
"/>
coeuntibus, ra
<
lb
/>
tio
<
emph
type
="
italics
"/>
Qv
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Qx
<
emph.end
type
="
italics
"/>
per (per Corol. </
s
>
<
s
>2 Lem. </
s
>
<
s
>VII.) fit ratio æqualitatis. </
s
>
<
s
>Er
<
lb
/>
go
<
emph
type
="
italics
"/>
Qxquad.
<
emph.end
type
="
italics
"/>
eo
<
lb
/>
<
figure
id
="
id.039.01.080.1.jpg
"
xlink:href
="
039/01/080/1.jpg
"
number
="
24
"/>
<
lb
/>
in caſu, æquale
<
lb
/>
eſt rectangu
<
lb
/>
lo 4
<
emph
type
="
italics
"/>
PSXQR.
<
emph.end
type
="
italics
"/>
<
lb
/>
Eſt autem (ob
<
lb
/>
ſimilia trian
<
lb
/>
gula
<
emph
type
="
italics
"/>
QxT,
<
lb
/>
SPN)
<
expan
abbr
="
Qxq.
">Qxque</
expan
>
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
QTq.
">QTque</
expan
>
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
<
expan
abbr
="
PSq.
">PSque</
expan
>
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
SNq.
">SNque</
expan
>
<
emph.end
type
="
italics
"/>
<
lb
/>
hoc eſt (per
<
lb
/>
Corol. </
s
>
<
s
>1. Lem. </
s
>
<
s
>XIV.) ut
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SA,
<
emph.end
type
="
italics
"/>
id eſt ut 4
<
emph
type
="
italics
"/>
PSXQR
<
emph.end
type
="
italics
"/>
<
lb
/>
ad 4
<
emph
type
="
italics
"/>
SAXQR,
<
emph.end
type
="
italics
"/>
& inde (per Prop. </
s
>
<
s
>IX. Lib. </
s
>
<
s
>v. </
s
>
<
s
>Elem.)
<
emph
type
="
italics
"/>
<
expan
abbr
="
QTq.
">QTque</
expan
>
<
emph.end
type
="
italics
"/>
&
<
lb
/>
4
<
emph
type
="
italics
"/>
SAXQR
<
emph.end
type
="
italics
"/>
æquantur. </
s
>
<
s
>Ducantur hæc æqualia in (
<
emph
type
="
italics
"/>
SPq./QR
<
emph.end
type
="
italics
"/>
), & fiet
<
lb
/>
(
<
emph
type
="
italics
"/>
SPq.XQTq./QR
<
emph.end
type
="
italics
"/>
) æquale
<
emph
type
="
italics
"/>
SPq.X4SA:
<
emph.end
type
="
italics
"/>
& propterea (per Corol. </
s
>
<
s
>1 & 5
<
lb
/>
Prop. </
s
>
<
s
>VI.) vis centripeta eſt reciproce ut
<
emph
type
="
italics
"/>
SPq.X4SA,
<
emph.end
type
="
italics
"/>
id eſt, ob da
<
lb
/>
tam 4
<
emph
type
="
italics
"/>
SA,
<
emph.end
type
="
italics
"/>
reciproce in duplicata ratione diſtantiæ
<
emph
type
="
italics
"/>
SP. Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>