Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
81
82
83
84
85
86
87
88
89
90
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/089.jpg
"
pagenum
="
61
"/>
<
arrow.to.target
n
="
note37
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note37
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XX. PROBLEMA XII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Circa datum umbilicum Trajectoriam quamvis ſpecie datam deſcribe
<
lb
/>
re, quæ per data puncta tranſibit & rectas tanget pofitione datas.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
1. Dato umbilico
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
deſcribenda ſit Trajectoria
<
emph
type
="
italics
"/>
ABC
<
emph.end
type
="
italics
"/>
per
<
lb
/>
puncta duo
<
emph
type
="
italics
"/>
B, C.
<
emph.end
type
="
italics
"/>
Quoniam Trajectoria datur ſpecie, dabitur ra
<
lb
/>
tio axis principalis ad diſtantiam
<
lb
/>
<
figure
id
="
id.039.01.089.1.jpg
"
xlink:href
="
039/01/089/1.jpg
"
number
="
31
"/>
<
lb
/>
umbilieorum. </
s
>
<
s
>In ea ratione cape
<
lb
/>
<
emph
type
="
italics
"/>
KB
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
BS,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
LC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CS.
<
emph.end
type
="
italics
"/>
Cen
<
lb
/>
tris
<
emph
type
="
italics
"/>
B, C,
<
emph.end
type
="
italics
"/>
intervallis
<
emph
type
="
italics
"/>
BK, CL,
<
emph.end
type
="
italics
"/>
de
<
lb
/>
ſcribe circulos duos, & ad rectam
<
lb
/>
<
emph
type
="
italics
"/>
KL,
<
emph.end
type
="
italics
"/>
quæ tangat eoſdem in
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
L,
<
emph.end
type
="
italics
"/>
demitte perpendiculum
<
emph
type
="
italics
"/>
SG,
<
emph.end
type
="
italics
"/>
idemque ſeca in
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
a,
<
emph.end
type
="
italics
"/>
ita ut ſit
<
lb
/>
<
emph
type
="
italics
"/>
GA
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Ga
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
aS,
<
emph.end
type
="
italics
"/>
ut eſt
<
emph
type
="
italics
"/>
KB
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
BS,
<
emph.end
type
="
italics
"/>
& axe &c.
<
emph
type
="
italics
"/>
Aa,
<
emph.end
type
="
italics
"/>
verticibus
<
lb
/>
<
emph
type
="
italics
"/>
A, a,
<
emph.end
type
="
italics
"/>
deſcribatur Trajectoria. </
s
>
<
s
>Dico factum. </
s
>
<
s
>Sit enim
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
umbilicus
<
lb
/>
alter Figuræ deſcriptæ, & cum ſit
<
emph
type
="
italics
"/>
GA
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
Ga
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
aS,
<
emph.end
type
="
italics
"/>
erit di
<
lb
/>
viſim
<
emph
type
="
italics
"/>
Ga-GA
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
Aa
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
aS-AS
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
SH
<
emph.end
type
="
italics
"/>
in eadem &c. </
s
>
<
s
>ratione,
<
lb
/>
adeoQ.E.I. ratione quam habet axis principalis Figuræ deſcribendæ
<
lb
/>
ad diſtantiam umbilieorum ejus; & propterea Figura deſcripta eſt
<
lb
/>
ejuſdem ſpeciei cum deſcribenda. </
s
>
<
s
>Cumque ſint
<
emph
type
="
italics
"/>
KB
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
BS
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
LC
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
CS
<
emph.end
type
="
italics
"/>
in eadem ratione, tranſibit hæc Figura per puncta
<
emph
type
="
italics
"/>
B, C,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
ex Conicis manifeſtum eſt. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
2. Dato umbilico
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
deſcribenda ſit Trajectoria quæ rectas
<
lb
/>
duas
<
emph
type
="
italics
"/>
TR, tr
<
emph.end
type
="
italics
"/>
alicubi contingat. </
s
>
<
s
>Ab umbilico in tangentes demitte
<
lb
/>
perpendicula
<
emph
type
="
italics
"/>
ST, St
<
emph.end
type
="
italics
"/>
& produc ea
<
lb
/>
<
figure
id
="
id.039.01.089.2.jpg
"
xlink:href
="
039/01/089/2.jpg
"
number
="
32
"/>
<
lb
/>
dem ad
<
emph
type
="
italics
"/>
V, v,
<
emph.end
type
="
italics
"/>
ut ſint
<
emph
type
="
italics
"/>
TV, tv
<
emph.end
type
="
italics
"/>
æ
<
lb
/>
quales
<
emph
type
="
italics
"/>
TS, tS.
<
emph.end
type
="
italics
"/>
Biſeca
<
emph
type
="
italics
"/>
Vv
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
O,
<
emph.end
type
="
italics
"/>
<
lb
/>
& erige perpendiculum infinitum
<
lb
/>
<
emph
type
="
italics
"/>
OH,
<
emph.end
type
="
italics
"/>
rectamque
<
emph
type
="
italics
"/>
VS
<
emph.end
type
="
italics
"/>
infinite pro
<
lb
/>
ductam ſeca in
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
k
<
emph.end
type
="
italics
"/>
ita, ut ſit
<
lb
/>
<
emph
type
="
italics
"/>
VK
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
KS
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Vk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
kS
<
emph.end
type
="
italics
"/>
ut eſt
<
lb
/>
Trajectoriæ deſcribendæ axis prin
<
lb
/>
cipalis ad umbilieorum diſtantiam. </
s
>
<
s
>
<
lb
/>
Super diametro
<
emph
type
="
italics
"/>
Kk
<
emph.end
type
="
italics
"/>
deſcribatur
<
lb
/>
circulus ſecans
<
emph
type
="
italics
"/>
OH
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
; & umbilicis
<
emph
type
="
italics
"/>
S, H,
<
emph.end
type
="
italics
"/>
axe principali ipſam
<
lb
/>
<
emph
type
="
italics
"/>
VH
<
emph.end
type
="
italics
"/>
æquante, deſcribatur Trajectoria. </
s
>
<
s
>Dico factum. </
s
>
<
s
>Nam biſeca
<
lb
/>
<
emph
type
="
italics
"/>
Kk
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
X,
<
emph.end
type
="
italics
"/>
& junge
<
emph
type
="
italics
"/>
HX, HS, HV, Hv.
<
emph.end
type
="
italics
"/>
Quoniam eſt
<
emph
type
="
italics
"/>
VK
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
KS
<
emph.end
type
="
italics
"/>
<
lb
/>
ut
<
emph
type
="
italics
"/>
Vk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
kS
<
emph.end
type
="
italics
"/>
; & compofite ut
<
emph
type
="
italics
"/>
VK+Vk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
KS+kS
<
emph.end
type
="
italics
"/>
; diviſimque </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>